List of MTCs by discriminant
The online database of Vertex Operator Algebras and Modular Categories (Version 0.5)
Terry Gannon, Gerald Höhn, Hiroshi Yamauchi, ...
Home | VOA: systematic, cc | MTC: systematic, rank, level, disc, cc | search form | VOA glossary | MTC glossary | submission form
Discriminant D in [x,x+1) with x= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511,
- disc.=4 :finiteGr-2-4-1, ising1, ising1-, ising2, ising2-, ising3, ising3-, ising4, ising4-, kmA1_2, kmA3_1, kmB10_1, kmB11_1, kmB12_1, kmB13_1, kmB14_1, kmB15_1, kmB16_1, kmB17_1, kmB18_1, kmB19_1, kmB20_1, kmB2_1, kmB21_1, kmB22_1, kmB23_1, kmB24_1, kmB3_1, kmB4_1, kmB5_1, kmB6_1, kmB7_1, kmB8_1, kmB9_1, kmD10_1, kmD11_1, kmD12_1, kmD13_1, kmD14_1, kmD15_1, kmD16_1, kmD17_1, kmD18_1, kmD19_1, kmD20_1, kmD21_1, kmD22_1, kmD23_1, kmD24_1, kmD4_1, kmD5_1, kmD6_1, kmD7_1, kmD8_1, kmD9_1, kmE8_2, min1, qn4, qn4-, qs2-^2, qs2^2, qs2.qs2-, qs4, qs4-, qu2, qv2,
- disc.=Root[1499 - 1062*#1 - 421*#1^2 + 13*#1^3 & , 3, 0] :kmE8_3, kmF4_2,
- disc.=Root[-1944 + 648*#1 - 54*#1^2 + #1^3 & , 3, 0] :kmA1_7, kmC7_1,
- disc.=Root[-1319 - 665*#1 - 171*#1^2 + 4*#1^3 & , 1, 0] :kmA4_2,
- disc.=64 :finiteGr-8-22-1, finiteGr-8-22-2, finiteGr-8-64-1, finiteGr-8-64-2, finiteGr-8-64-3, kmD8_2, qn64, qn64-, qs64, qs64-, qu8, qv8,
- disc.=Root[-1176 + 1139*#1 - 917*#1^2 + 13*#1^3 & , 1, 0] :kmA1_9, kmC9_1,
- disc.=51 + 2*Sqrt[757] :kmA2_4,
- disc.=Root[-159 + 79*#1 - 670*#1^2 + 6*#1^3 & , 1, 0] :min4,
- disc.=Root[496 + 93*#1 - 270*#1^2 + 2*#1^3 & , 3, 0] :kmA6_2,
- disc.=Root[1328 - 691*#1 - 264*#1^2 + 2*#1^3 & , 3, 0] :N1min3,
- disc.=Root[-1832 - 1031*#1 - 341*#1^2 + 2*#1^3 & , 1, 0] :kmA1_13, kmC13_1,
- disc.=21*(5 + Sqrt[21]) :kmE7_3,
- disc.=Root[1035 - 702*#1 - 625*#1^2 + 3*#1^3 & , 3, 0] :kmA7_2,
- disc.=Root[-912 - 940*#1 - 248*#1^2 + #1^3 & , 1, 0] :kmA1_15, kmC15_1,
- disc.=Root[-586 + 6*#1 + 24*#1^2 - 254*#1^3 + #1^4 & , 2, 0] :min5,
- disc.=Root[-1151 - 144*#1 - 520*#1^2 + 2*#1^3 & , 1, 0] :N2min5,
- disc.=48*(3 + 2*Sqrt[2]) :kmA2_5,
- disc.=Root[-2451 + 1794*#1 - 1253*#1^2 + 4*#1^3 & , 1, 0] :kmA8_2,
- disc.=96*(2 + Sqrt[2]) :N1min4,
- disc.=Root[-392 + 968*#1 - 3805*#1^2 + 11*#1^3 & , 1, 0] :kmB2_4, kmC4_2,
- disc.=Root[1090 + 2569*#1 - 358*#1^2 + #1^3 & , 3, 0] :kmA1_17, kmC17_1,
- disc.=Root[-2255 - 2762*#1 - 846*#1^2 + 2*#1^3 & , 1, 0] :kmE6_3,
- disc.=Root[-3676 + 874*#1 - 439*#1^2 + #1^3 & , 1, 0] :N2min6,
- disc.=Root[1519 + 1168*#1 - 1794*#1^2 + 4*#1^3 & , 3, 0] :kmA9_2,
- disc.=Root[3272 + 1813*#1 - 1869*#1^2 + 4*#1^3 & , 3, 0] :kmA4_3,
- disc.=Root[4094 + 2654*#1 - 951*#1^2 + 2*#1^3 & , 3, 0] :kmA1_19, kmC19_1,
- disc.=Root[-2858 - 3409*#1 - 1990*#1^2 + 4*#1^3 & , 1, 0] :kmE8_4,
Home | VOA: systematic, cc | MTC: systematic, rank, level, disc, cc | search form | VOA glossary | MTC glossary | submission form