List of MTCs by central charge
The online database of Vertex Operator Algebras and Modular Categories (Version 0.5)
Terry Gannon, Gerald Höhn, Hiroshi Yamauchi, ...
Home | VOA: systematic, cc | MTC: systematic, rank, level, disc, cc | search form | VOA glossary | MTC glossary | submission form
Central charge c in [x,x+1) with x= 0, 1, 2, 3, 4, 5, 6, 7,
- c=0 :e6double, e6double-, finiteGr-10-100-1, finiteGr-10-16-1, finiteGr-108-84-1, finiteGr-1-1-1, finiteGr-114-96-1, finiteGr-120-39-1, finiteGr-120-74-1, finiteGr-120-88-1, finiteGr-12-14-1, finiteGr-12-32-1, finiteGr-12-32-2, finiteGr-136-100-1, finiteGr-14-28-1, finiteGr-144-65-1, finiteGr-160-94-1, finiteGr-16-46-1, finiteGr-16-46-2, finiteGr-16-46-3, finiteGr-168-32-1, finiteGr-168-54-1, finiteGr-16-88-1, finiteGr-16-88-2, finiteGr-16-88-3, finiteGr-16-88-4, finiteGr-16-88-5, finiteGr-16-88-6, finiteGr-18-44-1, finiteGr-18-44-2, finiteGr-18-72-1, finiteGr-200-100-1, finiteGr-20-22-1, finiteGr-20-64-1, finiteGr-20-64-2, finiteGr-21-25-1, finiteGr-216-80-1, finiteGr-22-64-1, finiteGr-2-4-1, finiteGr-24-21-1, finiteGr-24-42-1, finiteGr-24-56-1, finiteGr-24-86-1, finiteGr-24-86-2, finiteGr-24-86-3, finiteGr-26-88-1, finiteGr-300-84-1, finiteGr-32-100-1, finiteGr-32-100-2, finiteGr-32-100-3, finiteGr-32-100-4, finiteGr-32-100-5, finiteGr-336-65-1, finiteGr-360-44-1, finiteGr-36-36-1, finiteGr-36-64-1, finiteGr-3-9-1, finiteGr-39-65-1, finiteGr-40-88-1, finiteGr-40-88-2, finiteGr-4-16-1, finiteGr-4-16-2, finiteGr-42-100-1, finiteGr-42-44-1, finiteGr-48-56-1, finiteGr-48-56-2, finiteGr-48-84-1, finiteGr-48-84-2, finiteGr-48-94-1, finiteGr-48-94-2, finiteGr-5-25-1, finiteGr-52-58-1, finiteGr-54-84-1, finiteGr-54-84-2, finiteGr-54-84-3, finiteGr-55-49-1, finiteGr-56-58-1, finiteGr-60-22-1, finiteGr-60-86-1, finiteGr-6-36-1, finiteGr-6-8-1, finiteGr-68-88-1, finiteGr-72-32-1, finiteGr-72-60-1, finiteGr-72-74-1, finiteGr-72-77-1, finiteGr-72-77-2, finiteGr-7-49-1, finiteGr-78-64-1, finiteGr-80-76-1, finiteGr-8-22-1, finiteGr-8-22-2, finiteGr-8-64-1, finiteGr-8-64-2, finiteGr-8-64-3, finiteGr-96-96-1, finiteGr-96-96-2, finiteGr-96-96-3, finiteGr-96-96-4, finiteGr-9-81-1, finiteGr-9-81-2, haagerup12, haagerup12-, kmA16_1, kmA24_1, kmA8_1, kmB12_2, kmB16_2, kmB20_2, kmB24_2, kmB4_2, kmB8_2, kmC12_2, kmC4_4, kmD16_1, kmD24_1, kmD4_8, kmD8_1, kmE8_1, kmF4_4, qn25, qs13, qs17, qs25, qs29, qs2.qs2-, qs37, qs41, qs49, qs49-, qs5, qs53, qs61, qs73, qs81, qs81-, qs89, qs9, qs9-, qs97, qu2, qu2^5, qu4, qu8, qv4, trivial,
- c=3/19 :kmD9_3,
- c=2/11 :kmE7_4,
- c=1/5 :qs3.lee_yang-,
- c=3/13 :kmA7_5,
- c=1/4 :kmA21_2, kmC12_3,
- c=3/10 :kmA17_2,
- c=4/13 :kmC10_2,
- c=1/3 :kmA3_5,
- c=3/8 :kmA13_2, kmB6_5,
- c=2/5 :kmG2_6,
- c=8/17 :kmF4_8,
- c=1/2 :ising1, kmA9_2, kmB16_1, kmB24_1, kmB8_1, min1,
- c=4/7 :kmB9_4,
- c=3/5 :kmB14_3,
- c=8/13 :kmA8_4, kmB4_6,
- c=7/10 :lee_yang-.ising4, min2, N1min1,
- c=12/17 :kmB7_4,
- c=5/7 :kmB6_3,
- c=8/11 :kmC8_2,
- c=3/4 :kmA5_2,
- c=4/5 :lee_yang.min3fac5, min3, qs3-.lee_yang,
- c=6/7 :3fieldsx-.min3fac5-, min4, qs3.3fieldsx-,
- c=25/28 :min5,
- c=10/11 :kmG2_7,
- c=11/12 :min6,
- c=12/13 :kmB5_4,
- c=14/15 :min7,
- c=52/55 :min8,
- c=21/22 :min9,
- c=25/26 :min10,
- c=88/91 :min11,
- c=34/35 :min12,
- c=39/40 :min13,
- c=133/136 :min14,
- c=50/51 :min15,
- c=56/57 :min16,
- c=187/190 :min17,
- c=69/70 :min18,
- c=76/77 :min19,
- c=250/253 :min20,
- c=91/92 :min21,
- c=99/100 :min22,
- c=322/325 :min23,
- c=116/117 :min24,
- c=125/126 :min25,
- c=403/406 :min26,
- c=144/145 :min27,
- c=154/155 :min28,
- c=1 :kmA1_1, kmA17_1, kmA3_6, kmA4_3, kmA9_1, kmC3_3, kmC5_5, kmD13_2, kmD17_1, kmD17_2, kmD21_2, kmD5_2, kmD9_1, kmD9_2, qn32, qn8, qs16, qs2, qs32, qs4, qs64, qs8,
- c=28/25 :kmD12_3,
- c=8/7 :3fieldsx,
- c=81/70 :N1min3,
- c=13/11 :kmA7_3,
- c=6/5 :lee_yang-.qu2,
- c=5/4 :kmC22_1, N1min4,
- c=13/10 :kmC18_1,
- c=17/13 :kmD5_5,
- c=55/42 :N1min5,
- c=4/3 :kmB3_4, kmC6_2, kmD4_3, kmG2_8,
- c=27/20 :N1min6,
- c=11/8 :kmC14_1,
- c=91/66 :N1min7,
- c=7/5 :lee_yang-^2.qs4-, N1min8,
- c=405/286 :N1min9,
- c=10/7 :N1min10,
- c=187/130 :N1min11,
- c=81/56 :N1min12,
- c=247/170 :N1min13,
- c=16/11 :kmA6_4, kmF4_2,
- c=35/24 :N1min14,
- c=945/646 :N1min15,
- c=22/15 :N1min16,
- c=391/266 :N1min17,
- c=81/55 :N1min18,
- c=475/322 :N1min19,
- c=3/2 :ising2, kmA1_2, kmB17_1, kmB9_1, kmC10_1,
- c=17/11 :kmA3_7,
- c=33/20 :kmB9_3,
- c=58/35 :lee_yang.3fieldsx-,
- c=22/13 :kmG2_9,
- c=12/7 :kmA10_3,
- c=7/4 :kmC6_1,
- c=9/5 :kmA1_3, N2min3, qs2-.lee_yang,
- c=2 :kmA10_1, kmA1_4, kmA18_1, kmA2_1, kmA3_8, kmB13_2, kmB17_2, kmB21_2, kmB4_7, kmB5_2, kmB8_5, kmB9_2, kmC4_5, kmC8_3, kmD10_1, kmD18_1, kmF4_9, kmG2_10, N2min4, qs11, qs19, qs2^2, qs23, qs27, qs3, qs31, qs43, qs47, qs59, qs67, qs7, qs71, qs79, qs83,
- c=15/7 :kmA1_5, N2min5,
- c=11/5 :kmD7_3,
- c=56/25 :kmA22_2,
- c=9/4 :kmA1_6, N2min6,
- c=16/7 :kmA18_2, kmC4_2,
- c=7/3 :kmA1_7, kmC5_3, N2min7,
- c=40/17 :kmA14_2,
- c=31/13 :kmA3_9,
- c=12/5 :kmA1_8, N2min8,
- c=27/11 :kmA1_9, N2min9,
- c=32/13 :kmA10_2,
- c=5/2 :ising3, kmA1_10, kmB10_1, kmB18_1, kmB2_1, kmB3_5, kmC3_4, N2min10,
- c=33/13 :kmA1_11, N2min11,
- c=18/7 :5fieldsx, kmA1_12, kmF4_5, N2min12,
- c=13/5 :kmA1_13, kmC11_3,
- c=34/13 :kmB12_3,
- c=21/8 :kmA1_14,
- c=45/17 :kmA1_15,
- c=8/3 :kmA1_16, kmA4_4, kmA6_2, kmD8_4,
- c=51/19 :kmA1_17,
- c=27/10 :kmA1_18,
- c=19/7 :kmA1_19, kmA3_10,
- c=30/11 :kmA1_20,
- c=63/23 :kmA1_21,
- c=11/4 :kmA1_22,
- c=69/25 :kmA1_23,
- c=47/17 :kmD7_5,
- c=36/13 :kmA1_24,
- c=25/9 :kmA1_25,
- c=39/14 :kmA1_26,
- c=81/29 :kmA1_27,
- c=14/5 :kmA1_28, kmB4_3, kmG2_1, lee_yang,
- c=87/31 :kmA1_29,
- c=45/16 :kmA1_30,
- c=20/7 :kmD6_4,
- c=3 :kmA11_1, kmA19_1, kmA3_1, kmC7_4, kmD10_2, kmD11_1, kmD14_2, kmD18_2, kmD19_1, kmD22_2, kmD6_2, kmE7_3, qn16-, qn4-, qn64-,
- c=22/7 :kmD10_3, kmE6_2,
- c=41/13 :kmC23_2,
- c=16/5 :kmA2_2, kmB4_8, kmD4_4,
- c=81/25 :kmC23_1,
- c=13/4 :kmC21_2,
- c=23/7 :kmC19_1,
- c=10/3 :4fieldsx,
- c=57/17 :kmC15_1,
- c=37/11 :kmC19_2,
- c=64/19 :kmF4_10,
- c=24/7 :kmE8_5,
- c=38/11 :kmB3_6,
- c=45/13 :kmC11_1,
- c=7/2 :ising4, kmB11_1, kmB19_1, kmB3_1, kmC17_2, kmE6_4,
- c=40/11 :kmC4_6,
- c=51/14 :kmB5_5,
- c=11/3 :kmA5_3, kmC15_2, kmC3_5, kmC7_1,
- c=59/16 :kmB7_3,
- c=19/5 :qs2.lee_yang,
- c=31/8 :kmC13_2,
- c=4 :kmA12_1, kmA20_1, kmA2_3, kmA4_1, kmA4_5, kmA6_5, kmA8_3, kmB10_2, kmB14_2, kmB18_2, kmB2_2, kmB22_2, kmB6_2, kmD12_1, kmD20_1, kmD4_1, qn13, qn17, qn29, qn37, qn41, qn5, qn53, qn61, qn73, qn89, qn97, qv2, qv8,
- c=37/9 :kmD13_3,
- c=29/7 :kmC11_2,
- c=21/5 :kmC3_1, qs2-.lee_yang-,
- c=55/13 :kmA23_2,
- c=17/4 :kmB3_7, kmB4_9,
- c=47/11 :kmA19_2, kmD5_3,
- c=13/3 :kmA15_2,
- c=48/11 :kmC6_4,
- c=31/7 :kmA11_2, kmD9_5,
- c=9/2 :ising4-, kmB12_1, kmB20_1, kmB4_1, kmC9_2,
- c=32/7 :kmA2_4,
- c=23/5 :kmA11_3, kmA7_2, kmC3_6,
- c=88/19 :kmB8_4,
- c=51/11 :kmB10_3, kmC7_3,
- c=14/3 :4fieldsx-, kmG2_2,
- c=52/11 :kmD4_5,
- c=24/5 :kmB6_4, kmF4_6,
- c=113/23 :kmE7_5,
- c=64/13 :kmB3_8,
- c=5 :kmA13_1, kmA21_1, kmA2_5, kmA3_2, kmA5_1, kmA7_4, kmB2_3, kmC10_3, kmC4_7, kmC7_2, kmD11_2, kmD13_1, kmD15_2, kmD19_2, kmD21_1, kmD23_2, kmD5_1, kmD7_2, kmF4_3, qn16, qn4, qn64,
- c=56/11 :kmA4_6, kmB4_4,
- c=36/7 :kmA2_3.3fieldsx,
- c=31/6 :kmB7_5,
- c=88/17 :kmB4_10, kmD8_3, kmE8_4,
- c=26/5 :kmF4_1, lee_yang-,
- c=68/13 :kmC24_1,
- c=58/11 :kmC20_1,
- c=53/10 :kmE7_2,
- c=16/3 :kmA2_6, kmC16_1,
- c=59/11 :kmC3_7,
- c=38/7 :5fieldsx-, kmC12_1,
- c=11/2 :ising3-, kmB13_1, kmB21_1, kmB3_9, kmB5_1, kmC4_3,
- c=28/5 :kmA2_7, kmC8_1,
- c=157/28 :kmB13_3,
- c=40/7 :kmB2_4,
- c=23/4 :kmB5_3, kmC5_2,
- c=64/11 :kmA2_8,
- c=6 :kmA14_1, kmA22_1, kmA2_9, kmA4_7, kmA5_4, kmA6_1, kmB11_2, kmB15_2, kmB19_2, kmB23_2, kmB3_10, kmB3_2, kmB7_2, kmC3_8, kmC4_1, kmC5_4, kmD14_1, kmD22_1, kmD4_6, kmD6_1, kmD6_5, kmE6_1, kmG2_3, min3fac5, qs11-, qs19-, qs2-^2, qs23-, qs27-, qs3-, qs31-, qs43-, qs47-, qs59-, qs67-, qs7-, qs71-, qs79-, qs83-,
- c=141/23 :kmD11_3,
- c=80/13 :kmA2_10,
- c=31/5 :qs2.lee_yang-,
- c=56/9 :kmA24_2,
- c=25/4 :kmB2_5,
- c=144/23 :kmA20_2,
- c=120/19 :kmA16_2,
- c=32/5 :kmA12_2, kmA6_3,
- c=45/7 :kmA3_3,
- c=13/2 :ising2-, kmB14_1, kmB22_1, kmB6_1,
- c=85/13 :kmC3_9,
- c=72/11 :kmA8_2, kmE8_3,
- c=33/5 :kmD9_4,
- c=20/3 :kmB2_6, kmB8_3,
- c=27/4 :kmD7_4, kmF4_7,
- c=88/13 :kmA4_8,
- c=89/13 :kmA9_3,
- c=48/7 :3fieldsx-, kmA4_2,
- c=151/22 :kmB9_5,
- c=118/17 :kmE6_5,
- c=7 :kmA15_1, kmA23_1, kmA7_1, kmB2_7, kmB4_5, kmC3_10, kmC3_2, kmD12_2, kmD15_1, kmD16_2, kmD20_2, kmD23_1, kmD24_2, kmD4_2, kmD5_4, kmD7_1, kmD8_2, kmE7_1, kmG2_4, qn32-, qn8-, qs16-, qs2-, qs32-, qs4-, qs64-, qs8-,
- c=92/13 :kmD4_7,
- c=206/29 :kmD14_3,
- c=64/9 :kmC24_2,
- c=36/5 :kmC22_2,
- c=94/13 :kmD6_3,
- c=167/23 :kmC21_1,
- c=80/11 :kmB2_8,
- c=168/23 :kmC20_2,
- c=139/19 :kmC17_1,
- c=37/5 :kmC13_1, kmC6_3,
- c=52/7 :kmC18_2,
- c=97/13 :kmC9_3,
- c=15/2 :ising1-, kmA3_4, kmB15_1, kmB23_1, kmB2_9, kmB7_1, kmE8_2,
- c=83/11 :kmC9_1,
- c=144/19 :kmC16_2, kmD8_5,
- c=38/5 :kmE6_3,
- c=61/8 :kmB11_3,
- c=100/13 :kmB2_10,
- c=132/17 :kmC14_2,
- c=70/9 :kmG2_5,
- c=55/7 :kmC5_1,
- c=63/8 :kmB3_3,
- c=87/11 :kmA5_5,
Home | VOA: systematic, cc | MTC: systematic, rank, level, disc, cc | search form | VOA glossary | MTC glossary | submission form