Systematic MTC catalog
The online database of Vertex Operator Algebras and Tensor Categories (Version 0.5)
Terry Gannon, Gerald Höhn, Hiroshi Yamauchi, ...
Home
|
VOA: systematic,
cc
|
MTC: systematic,
rank,
level,
disc,
cc
|
search form |
VOA glossary |
MTC glossary |
submission form
Table of content
(at least) complete up to 4 simple objects; sorted by increasing discriminant
- 1 simple objects: trivial
- 2 simple objects: qs2, lee_yang
- 3 simple objects: qs3, (ising1, ising2,
ising3, ising4), 3fieldsx
- 4 simple objects: (qs4, qn4),
(qu2, qv2), 4fieldsx
- 5 simple objects: (qs5, qn5), (kmA1_4, min3fac5),
5fieldsx, kmF4_2
- 6 simple objects: kmA2_2, (kmE7_2, N1min1), kmB2_2,
kmG2_3
- 7 simple objects: qs7, (kmC6_1,
kmA1_6), kmB3_2
- 8 simple objects: (qs8, qn8), kmB4_2
- 9 simple objects: qs9, kmB5_2, kmC8_1,
(kmF4_3, kmG2_4),
- 10 simple objects: kmA2_3, kmB6_2, (kmB2_3,
kmC3_2), e6double, kmE8_4
- 11 simple objects: qs11, kmD4_2, kmB7_2, (kmA1_10, kmC10_1)
- 12 simple objects: kmB8_2, haagerup12, kmG2_5
- disc.=1: trivial
- disc.=2: qs2
- disc.=3: qs3
- disc.=(5 + Sqrt[5])/2: lee_yang
- disc.=4: (qs4, qn4), (qu2, qv2),
(ising1, ising2, ising3, ising4)
- disc.=5: (qs5, qn5)
- disc.=7: qs7
- disc.=8: (qs8, qn8)
- disc.=9: qs9
- disc.=(7*Csc[Pi/7]^2)/4: 3fieldsx
- disc.=11: qs11
- disc.=12: (kmA1_4, min3fac5)
- disc.=Root[-7 + 21*#1 - 14*#1^2 + #1^3 & , 3, 0] : 5fieldsx
- disc.=13: qs13, qn13
- disc.=16: qs16, qs16-, qu4, qv4
- disc.=17: qs17, qn17
- disc.=18.5917938865 : kmA1_4
- disc.=19: qs19
- disc.=19.2344223834 : kmG2_2
- disc.=20: kmB2_2
- prime MTCs: trivial, qs2, qs2-,
qs3, qs3-,
qs4, qs4-, qn4, qn4-,
qu2, qv2,
qs5, qn5, qs7, qs7-,
qs8, qs8-, qn8, qn8-,
qs9, qs9-,
qs11, qs11-, qs13, qn13,
qs16, qs16-, qn16, qn16-,
qu4, qv4,
qs17, qn17,
qs19, qs19-, qs23, qs23-,
qs25, qn25, qs27, qs27-,
qs29, qn29, qs31, qs31-,
qs32, qs32-, qn32, qs32-,
qs37, qn37,
qs41, qn41, qs43, qs43-,
qs47, qs47-, qs49, qs49-,
qs64, qs64-, qn64, qn64-,
qu8, qv8
- abelian groups: Z1, Z2, Z3,
Z4, Z2 x Z2, Z5,
Z6, Z7,
- symmetric/alternating groups: S3, A4, S4,
A5, S5, A6,
- (semi)dihedral/quaternion groups: D5, (D4 (?), Q4 (?)),
D7, D9 (?), (D8 (?),
Q8 (?), SD8 (?)),
- Frobenius groups: Z5.Z4, Z7.Z3, Z3^2.Z2 (?),
Z3^2.Z4, Z3^2.Q4, Z7.Z6,
Z11.Z5,
- further named groups: Z2 x S3 (?), DC3 (?), PSL(2,F7),
SL(2,F3),
- rest unnamed groups: finiteGr-168-54-1, finiteGr-24-56-1, finiteGr-48-56-1,
finiteGr-48-56-2, finiteGr-52-58-1, finiteGr-56-58-1,
finiteGr-72-60-1,
Type A
- Level 1: A1, A2, A3, A4, A5,
A6, A7, A8, A9, A10,
A11, A12, A13, A14, A15,
A16, A17, A18, A19, A20,
A21, A22, A23, A24, ...
- Level 2: A1, A2, A3, A4, A5,
A6, A7, A8, A9, A10,
A11, A12, A13, A14, A15,
A16, A17, A18, A19, A20,
A21, A22, A23, A24, ...
- Level 3: A1, A2, A3, A4, A5,
A6, A7, A8, A9, A10,
A11, A12, A13, A14, ...
- Level 4: A1, A2, A3, A4, A5,
A6, A7, A8, A9, ...
- Level 5: A1, A2, A3, A4, A5,
A6, A7, A8, A9, ...
- Level 6: A1, A2, A3, A4, ...
- Level 7: A1, A2, A3, A4, ...
- Level 8: A1, A2, A3, A4, ...
- Level 9: A1, A2, A3, A4, ...
- Level 10: A1, A2, A3, A4, ...
Type B
- Level 1: B2, B3, B4, B5,
B6, B7, B8, B9, B10,
B11, B12, B13, B14, B15,
B16, B17, B18, B19, B20,
B21, B22, B23, B24, ...
- Level 2: B2, B3, B4, B5,
B6, B7, B8, B9, B10,
B11, B12, B13, B14, B15,
B16, B17, B18, B19, B20,
B21, B22, B23, B24, ...
- Level 3: B2, B3, B4, B5,
B6, B7, B8, B9, B10,
B11, B12, B13, B14, ...
- Level 4: B2, B3, B4, B5,
B6, B7, B8, B9, ...
- Level 5: B2, B3, B4, B5,
B6, B7, B8, B9, ...
- Level 6: B2, B3, B4, ...
- Level 7: B2, B3, B4, ...
- Level 8: B2, B3, B4, ...
- Level 9: B2, B3, B4, ...
- Level 10: B2, B3, B4, ...
Type C
- Level 1: C3, C4, C5,
C6, C7, C8, C9, C10,
C11, C12, C13, C14, C15,
C16, C17, C18, C19, C20,
C21, C22, C23, C24, ...
- Level 2: C3, C4, C5,
C6, C7, C8, C9, C10,
C11, C12, C13, C14, C15,
C16, C17, C18, C19, C20,
C21, C22, C23, C24, ...
- Level 3: C3, C4, C5,
C6, C7, C8, C9, C10,
C11, C12, C13, C14, ...
- Level 4: C3, C4, C5,
C6, C7, C8, C9, ...
- Level 5: C3, C4, C5,
C6, C7, C8, C9, ...
- Level 6: C3, C4, ...
- Level 7: C3, C4, ...
- Level 8: C3, C4, ...
- Level 10: C3, C4, ...
Type D
- Level 1: D4, D5,
D6, D7, D8, D9, D10,
D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20,
D21, D22, D23, D24, ...
- Level 2: D4, D5,
D6, D7, D8, D9, D10,
D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20,
D21, D22, D23, D24, ...
- Level 3: D4, D5,
D6, D7, D8, D9, D10,
D11, D12, D13, D14, ...
- Level 4: D4, D5,
D6, D7, D8, D9, ...
- Level 5: D4, D5,
D6, D7, D8, D9, ...
- Level 6: D4, ...
- Level 7: D4, ...
- Level 8: D4, ...
- Level 9: D4, ...
- Level 10: D4, ...
Exceptional types
- E6 at level 1, 2, 3, 4, 5, ...
- E7 at level 1, 2, 3, 4, 5, ...
- E8 at level 1, 2, 3, 4, 5, ...
- F4 at level 1, 2, 3, 4,
5, 6, 7, 8,
9, 10, ...
- G2 at level 1, 2, 3, 4
5, 6, 7, 8
9, 10, ...
Home
|
VOA: systematic,
cc
|
MTC: systematic,
rank,
level,
disc,
cc
|
search form |
VOA glossary |
MTC glossary |
submission form