Differential Topology — Spring 2014

Gerald Hoehn

Problem sheet 9 April 24, 2014

Problem 1:

Let $M \subset \mathbf{R}^{n-1}$ be an (n-1)-dimensional submanifold of \mathbf{R}^n . Assume that there exists a differentiable map $\nu : M \longrightarrow \mathbf{R}^n$ such that $\nu(p) \notin T_pM$ for all $p \in M$. Show that M is orientable.

Problem 2: Consider

$$\omega = 3z \, dy \wedge dz + (x^2 + y^2) \, dz \wedge dx + xz \, dx \wedge dy$$

on \mathbb{R}^3 and the 2-dimensional submanifold

$$M = \{(x, y, z) \in \mathbf{R}^3 \mid z = xy\}.$$

Determine $\int_A \omega$, where $A = \{(x, y, z) \in M \mid |x| \le 1, |y| \le 1\}.$

(*Note*: Choose an orientation on M; it is uncritical that the boundary of A is not smooth at the four corners.)

Problem 3:

(a) Let f_1, \ldots, f_n be homogenous polynomials of degree m in the coordinates x_1, \ldots, x_n of \mathbf{R}^n and

$$\omega := \sum_{i=1}^{n} (-1)^{i-1} f_i \, dx_1 \wedge \ldots \wedge \widehat{dx_i} \wedge \ldots \wedge dx_n.$$

Let $S^{n-1} \subset \mathbf{R}^n$ be the unit sphere. Show that if m is even, then $\int_{S^{n-1}} \omega = 0$. (*Hint*: Consider the antipodal map $x \mapsto -x$ of \mathbf{R}^n .)

(b) Prove that the (n-1)-dimensional real projective space \mathbb{RP}^{n-1} is orientable if and only if n is even. (*Hint:* Oberserve that the antipodal map on the (n-1)-sphere S^{n-1} is orientation preserving if and only if n is even.)

Problem 3: (Spherical coordinate system)

Let $\Phi: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ be defined by

$$(r, \vartheta, \varphi) \mapsto (x, y, z) = (r \sin \vartheta \cos \varphi, r \sin \vartheta \sin \varphi, r \cos \vartheta).$$

It defines a diffeomorphism

$$\Phi: T := \mathbf{R}_+^* \times (0, \pi) \times (-\pi, \pi) \longrightarrow \Omega := \mathbf{R}^3 \setminus \{(x, y, z) \in \mathbf{R}^3 \mid x < 0, y = 0\}.$$

We also denote by $r, \vartheta, \varphi \to \mathbf{R}$ the components of the inverse of Φ .

- a) Show that the function ϑ and the differential form $d\phi$ can be extended from Ω to $\mathbf{R}^3 \setminus (0 \times 0 \times \mathbf{R})$ and the differential form $r^3 \sin \vartheta \, d\vartheta \wedge d\varphi$ can be extended to the whole \mathbf{R}^3 .
- b) Show that for a compact regular domain $K \subset \mathbf{R}^3$ one has

$$Vol_3(K) = \frac{1}{3} \int_{\partial K} r^3 \sin \vartheta \, d\vartheta \wedge d\varphi.$$

(Here, the volume $Vol_3(K)$ is defined as $\int_K dx \wedge dy \wedge dz$.)

c) Let $A \subset S^2$ be a compact regular domain inside the 2-sphere which does neither contain the north pole $P_N = (0,0,1)$ not the south pole $P_S = (0,0,-1)$. Show that

$$Vol_2(A) = 2k\pi - \int_{\partial A} \cos \vartheta \, d\varphi$$

where k = 0, 1, 2, depending on A containing none, one or two of the points $\{P_N, P_S\}$, respectively. (Here, the volume $Vol_2(A)$ is defined as

$$c \cdot \int_A x dy \wedge dz - y dx \wedge dz + z \, dx \wedge dy$$

with the constant c chosen such that $Vol_2(S^2) = 4\pi$.)