Differential Topology — Spring 2014

Gerald Hoehn

Problem sheet 8 April 10, 2014

Problem 1: (Spherical coordinate system)

Let $\Phi: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ be defined by $(r, \vartheta, \varphi) \mapsto (x, y, z) = (r \sin \vartheta \cos \varphi, r \sin \vartheta \sin \varphi, r \cos \vartheta)$. In an open set $V \subset \mathbf{R}^3$ let

$$\omega_1 = f_1 dx + f_2 dy + f_3 dz$$

$$\omega_2 = F_1 dy \wedge dz + F_2 dz \wedge dx + F_3 dx \wedge dy$$

$$\omega_3 = \Sigma dx \wedge dy \wedge dz.$$

Let $U = \Phi^{-1}(V)$ and

$$\Phi^* \omega_1 = g_1 dr + g_2 d\vartheta + g_3 d\varphi
\Phi^* \omega_2 = G_1 d\vartheta \wedge d\varphi + G_2 d\varphi \wedge dr + G_3 dr \wedge d\vartheta
\Phi^* \omega_3 = \Xi dr \wedge d\vartheta \wedge d\varphi.$$

Compute the functions $g_i, G_i, \Xi: U \longrightarrow \mathbf{R}$.

Problem 2:

(a) Consider on \mathbb{R}^3 the 2-form

$$\omega = 2xz \, dy \wedge dz + dz \wedge dx - (z^2 + e^x) \, dx \wedge dy.$$

Show that ω is closed and determine a 1-form η with $d\eta = \omega$.

(b) Consider on $\mathbf{R}^2 \setminus \{0\}$ the 1-form

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$$

Show that ω is closed but not exact.

(*Hint:* Solve $\omega = d\eta$ locally and show that η cannot be extended to a globally defined 1-form.)

Problem 3:

Two differentiable maps $f, g: M \longrightarrow N$ between differentiable manifolds are said to be differentiable homotopic if there exists an open subset $V \subset \mathbf{R} \times M$ containing $[0,1] \times M \subset V$ and a differentiable map $F: V \longrightarrow N$ such that f(x) = F(0,x) and g(x) = F(1,x) for $x \in M$.

Prove that differtiable homotopic maps f and g induce the same map $f^* = g^* : H^*_{DR}(N) \longrightarrow H^*_{DR}(M)$ between the de Rham cohomology groups.

(*Hint*: Construct maps $h_r: \mathcal{E}^r(N) \longrightarrow \mathcal{E}^{r-1}(M)$ for all r such

$$h_{r+1} \circ d + d \circ h_r = f^* - g^*.$$

Problem 4: (Symplectic structure on cotangent bundle)

Let M be a n-dimensional differentiable manifold and $\pi: T^*M \longrightarrow M$ its cotangent bundle. Let $\theta \in \mathcal{E}(T^*M)$ be the 1-form on T^*M which sends a vector in $T(T^*M)$ to $\operatorname{ev}(\sigma, T\pi)$ where $\sigma: T(T^*M) \longrightarrow T^*M$ is the natural projection, $T\pi: T(T^*M) \longrightarrow TM$ is the differential of π and $\operatorname{ev}: T_p^*M \times T_pM \longrightarrow \mathbf{R}$ is the natural evaluation map of a cotangent vector at a tangent vector for a point $p \in M$. Note that this is well-defined since for $u \in T(T^*M)$ the elements $\sigma(u)$ and $T\pi(u)$ are in the cotangent resp. tangent space of the point $\pi(\sigma(u)) \in M$.

Consider the closed 2-form $\omega = d\theta \in \mathcal{E}^2(T^*M)$.

(a) Show that in local coordinates x_1, \ldots, x_n around $p \in M$ one has

$$\omega = x_1 \wedge y_1 + \dots + x_n \wedge y_n$$

where $y_1 = dx_1, \ldots, y_n = dx_n$ and the x_i, y_i are the used local coordinates for T^*M .

(b) Show that $\omega^n := \underbrace{\omega \wedge \omega \wedge \ldots \wedge \omega}_{n-\text{times}}$ is a nowwhere vanishing 2n-form on T^*M .