Differential Topology — Spring 2014

Gerald Hoehn

Problem sheet 2 January 23, 2014

Problem 1: Prove the following universal properties for the differentiable sum and product:

- (a) There are two differentiable maps $\iota_i: M_i \longrightarrow M_1 \cup M_2$ (the inclusions) such that a map $f: M_1 \cup M_2 \longrightarrow N$ into a manifold N is differentiable if and only if the restrictions $f \circ \iota_i$ are differentiable.
- (b) There are two differentiable maps $\pi_i: M_1 \times M_2 \longrightarrow M_i$ (the projections) such that a map $f: N \longrightarrow M_1 \times M_2$ starting from a manifold N is differentiable if and only if the projections $\pi_i \circ f$ are differentiable.
- (c) Explain why the properties (a) and (b) characterize $M_1 \cup M_2$ respectively $M_1 \times M_2$ up to diffeomorphism among manifolds.

Problem 2: Let $M(m \times n, \mathbf{R})$ be the vector space of real $m \times n$ -matrices with real entries, and $M_r(m \times n, \mathbf{R})$ the subset of matrices of rank r. Prove that $M_r(m \times n, \mathbf{R})$ is a submanifold of $M(m \times n, \mathbf{R})$ of dimension $m \cdot n - (m-r) \cdot (n-r)$ for $r \leq \min\{m, n\}$.

Hint: a typical chart domain around a point of $M_r(m \times n, \mathbf{R})$ is given by the set $U \subset M(m \times n, \mathbf{R})$ of matrices of the form

$$\begin{pmatrix} A & AB \\ D & DB + C \end{pmatrix}$$
, $A \in M(r \times r, \mathbf{R})$, $\det(A) = 0$.

Such a matrix lies in $M_r(m \times n, \mathbf{R})$ if and only if C = 0.

Problem 3: Show that if the map $f: S^n \longrightarrow \mathbf{R}$ is differentiable, then there exist two different points $p, q \in S^n$, so that $T_p(f)$ and $T_q(f)$ are both 0.

- **Problem 4:** Let $\mathcal{E}^{(n)} := \mathcal{E}_0(\mathbf{R}^{\mathbf{n}})$ be the algebra of germs of differentiable functions on \mathbf{R}^n at the point $0 \in \mathbf{R}^{\mathbf{n}}$.
- (a) Show that $\mathbf{m}_n := \{ \phi_0 \in \mathcal{E}^{(n)} \mid \phi_0(o) = 0 \}$ is the only maximal ideal of $\mathcal{E}^{(n)}$.
- (b) Show that \mathbf{m}_n is generated by the germs of the coordinate functions x_1, \ldots, x_n .
- (c) Show that the ideal \mathbf{m}_n^k (i.e., the ideal generated by the products $a_1 \cdots a_k$ with $a_i \in \mathbf{m}_n$ for $i = 1, \ldots, k$) is the ideal of germs of functions for which all partial derivatives of order < k vanish at the origin.
- (d) Show that for a germ $f_0 \in \mathcal{E}(\mathbf{R}^n, \mathbf{R}^m)$ with $f_0(0) = 0$ the induced map $f^* : \mathcal{E}^{(m)} \longrightarrow \mathcal{E}^{(n)}$ satisfies $f^*(\mathbf{m}_m) \subset \mathbf{m}_n$ and so one obtains a linear map $\bar{f}^* : \mathbf{R}^m \cong \frac{\mathbf{m}_m}{\mathbf{m}_m^2} \longrightarrow \frac{\mathbf{m}_n}{\mathbf{m}_n^2} \cong \mathbf{R}^n$ which is given by the transpose of the Jacobi matrix ${}^tDf_0(0)$.
- (e) Show that the dual space $(\frac{\mathbf{m}_n}{\mathbf{m}_n^2})^*$ can be identified with the tangent space $T_0(\mathbf{R}^n)$.