Higher Algebra 2 — Spring 2006

Gerald Hoehn

Problem sheet 5 March 17, 2006

Problem 1: (a) Let K be a field of characteristic p > 0. Let L be a finite extension of K and suppose that [L : K] is prime to p. Show that L is separable over K.

(b) Let K/k be a separable extension, let L/k be an arbitrary extension and assume K and L are subfields of a common extension field. Prove that the field extension KL/L is separable.

Problem 2: Let K/k be an algebraic field extension, where k is of characteristic p > 0. An element $a \in K$ is called *purely inseparable* over k, if its minimal polynomial has only one different root. Prove that the following statements are equivalent:

- 1. The extension K/k is purely inseparable, i.e., every element $a \in K$ is purely inseparable over k.
- 2. The extension K/k has separable degree $[K:k]_s=1$.
- 3. For every element $a \in K$ there exists an $n \in \mathbb{N} \cup \{0\}$ such that $a^{p^n} \in k$.
- 4. The minimal polynomial of every element $a \in K$ is of the form $x^{p^n} b$, where $b \in k$ and $n \in \mathbb{N} \cup \{0\}$.
- 5. There exists a set of generators of K over k which are purely inseperable over k.

Problem 3: Determine the splitting field of $f(x) = x^4 - 4x^2 - 1 \in \mathbf{Q}[x]$ in \mathbf{C} , determine its Galois group over \mathbf{Q} , and describe the lattices of its subfields and of subgroups of the Galois group.

Problem 4: Show that the Galois group of $f(x) = x^5 - 4x + 2 \in \mathbf{Q}[x]$ over \mathbf{Q} is the symmetric group S_5 .