Higher Algebra 2 — Spring 2006

Gerald Hoehn

Problem sheet 4 March 3, 2006

Problem 1: Let k be a field of characteristic different from 2.

- (a) Show that K/k is an extension of degree 2 if and only if K of the form $k(\sqrt{D})$ where D is an element of k which is not a square in k. Here, \sqrt{D} denotes a root of the polynomial $x^2 D$.
- (b) Let D_1 and D_2 be elements of k, neither of which is a square in k. Prove that $k(\sqrt{D_1}, \sqrt{D_2})$ is of degree 4 over k if D_1D_2 is not a square in k and is of degree 2 otherwise.

Problem 3: Determine the splitting fields and its degrees over \mathbf{Q} of the following polynomials:

- (a) $x^4 2$,
- (b) $x^4 + 2$,
- (c) $x^4 + x^2 + 1$,
- (d) $x^6 4$.

Problem 3: Let K_1 and K_2 be two subfields of a field K. The composite field K_1K_2 of K_1 and K_2 is the intersection of all subfields of K containing both K_1 and K_2 . Let K_1 and K_2 be two extension fields of a field K contained in a field K.

- (a) Prove that $[K_1K_2:k] \leq [K_1:k][K_2:k]$. (In particular, K_1K_2/k is finite if K_1/k and K_2/k are both finite.)
- (b) Prove that K_1K_2/k is algebraic if K_1/k and K_2/k are both algebraic.

Problem 4: Let K_1 and K_2 be two extension fields of a field k contained in a field K, and assume both are the splitting fields over k of certain polynomials in k[x].

Prove that $K_1 \cap K_2$ is a splitting field over k. (*Hint:* Prove first that K_1K_2 is a splitting field.)