Higher Algebra 2 — Spring 2006

Gerald Hoehn

Problem sheet 2 February 3, 2006

Problem 1: Let $x_1, ..., x_n$ be elements of a field K. Prove the following formula for the *Vandermonde determinant:*

$$\begin{vmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{vmatrix} = \prod_{i < j} (x_j - x_i).$$

Problem 2: Prove the following theorem about the rank of a matrix: Let $A \in \operatorname{Mat}(n \times m, K)$ and let r be the largest non-negative integer such that there exist an $r \times r$ submatrix A' of A with det $A' \neq 0$. Then rank A = r. Here, a submatrix of A is a matrix obtained by removing an abitrary number of rows and columns from A.

Problem 3: Suppose A is an $n \times n$ matrix with real entries such that the diagonal elements are all positive, the off-diagonal elements are all negative and the row sums are all positive. Prove that det $A \neq 0$.

Problem 4: Compute the determinant of the matrix

$$A = \left(\begin{array}{c|c} B_1 & C \\ \hline 0 & B_2 \end{array}\right)$$

in terms of the three submatrices B_1 , B_2 and C.

Problem 5*: Let A be an $n \times n$ matrix. Let $I = \{i_1, \ldots, i_p\}$ be a subset of $\{1, \ldots, n\}$ and let $J = \{j_1, \ldots, j_q\}$ be the complement of I in $\{1, \ldots, n\}$. Denote by Γ the set of all permutations $\sigma \in S_n$ such that the restrictions of the map σ to I and J are monotone increasing functions. For $\gamma \in \Gamma$ let A_{γ} be the submatrix of A obtained by removing the rows j_1, \ldots, j_q and columns $\gamma(j_1), \ldots, \gamma(j_q)$ from A and let A_{γ}^* be the submatrix of A obtained by removing the rows i_1, \ldots, i_p and columns $\gamma(i_1), \ldots, \gamma(i_p)$ from A. Prove the following expansion theorem of Laplace:

$$\det A = \sum_{\gamma \in \Gamma} \epsilon(\gamma) \cdot \det A_{\gamma} \cdot \det A_{\gamma}^{*}.$$