Higher Algebra I — Fall 2005

Gerald Hoehn

Problem sheet 2 September 1, 2005

Problem 1: Prove the following remark from the lecture about the centralizer and normalizer of a subset S of a group G:

- (a) Cent(S) < Nor(S) < G.
- (b) H < G implies $H \triangleleft Nor(H)$.
- (c) K < G and $H \triangleleft K$ implies K < Nor(H), i.e., Nor(H) is the largest subgroup of G in which H is normal.

Problem 2: Let $c: G \longrightarrow \operatorname{Perm}(G)$ be the map defined for $a \in G$ by $c(a): G \to G, g \mapsto aga^{-1}$.

- (a) Show that c is a homomorphism from G into Aut(G) < Perm(G), the subgroup of automorphisms of G.
- (b) Is the image of c normal in Aut(G)?
- (c) Determine the kernel of c.

Problem 3: (a) Let G be group and H be a group of finite index. Show that there exists a normal subgroup N of G contained in H and also of finite index. (Hint: If [G:H]=n, find a homomorphism of G into S_n (the group of permutations of the set $\{1, \ldots, n\}$) whose kernel is contained in H.)

(b) Let G be a group and let H_1 , H_2 be subgroups of finite index. Prove that $H_1 \cap H_2$ has finite index.

Problem 4: Determine a composition series of the group S_4 , the group of permutations of the set $\{1, 2, 3, 4\}$.