Higher Algebra I — Fall 2005

Gerald Hoehn

Problem sheet 11 December 1, 2005

Problem 1: (a) Let R be an integral domain, $a \in R^*$ and $b \in R$. Prove that a polynomial $f \in R[x]$ is irreducible in R[x] if and only if the polynomial f(ax + b) is irreducible in R[x].

(b) Let p be a prime. Prove that the polynomial $f = x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible in $\mathbf{Q}[x]$. (Hint: Consider f(x+1) and use (a) and Eisenstein's criterion.)

Problem 2: Prove that $f = x^4 + 1$ is irreducible in $\mathbf{Q}[x]$. (Hint: The following procedure works for all polynomial $f \mathbf{Z}[x]$. If g|f one can assume $\deg g \leq [\frac{\deg f}{2}] = s$ and one has g(a)|f(a) for all $a \in \mathbf{Z}$. Choose different $a_0, \ldots, a_s \in \mathbf{Z}$ with $f(a_i) \neq 0$. For all s + 1-tupels (b_0, \ldots, b_s) of integers such that $b_i|f(a_i)$ choose the polynomial $g \in \mathbf{Z}[x]$ of degree $\leq s$ with $g(a_i) = b_i$ and check if g|f. Use symmetries to simplify the computations.)

Problem 3: Let m and n be natural numbers. Determine the structure of the following four **Z**-modules:

- (a) $\text{Hom}_{\mathbf{Z}}(\mathbf{Z}, \mathbf{Z})$,
- (b) $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z},\mathbf{Z})$,
- (c) $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}, \mathbf{Z}/n\mathbf{Z})$,
- (d) $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z}, \mathbf{Z}/n\mathbf{Z})$.

Problem 4: List which of the 13 numbered Lemmas, Propositions, Thoerems and Corollaries in Section 3.1 remain true if one takes R-modules for arbitrary rings R with 1. Formulate modified versions if necessary.

Problem 5^* : Find a counter-example to one of the numbered results of Section 3.1 for non commutative rings R.