Calculus I - Lecture 8 - The derivative function A

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus:

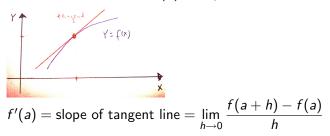
http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

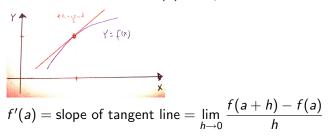
February 17, 2014

Last time we saw the geometric and algebraic definition of the derivative of a function f(x) at a point x = a

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



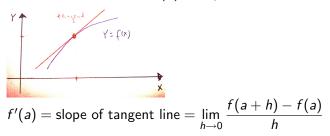
Last time we saw the geometric and algebraic definition of the derivative of a function f(x) at a point x = a



Definition

The derivative function f'(x) of a function f(x) is the function which has the value f'(a) for x = a.

Last time we saw the geometric and algebraic definition of the derivative of a function f(x) at a point x = a

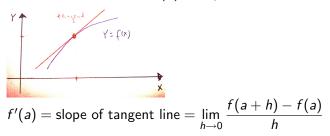


Definition

The derivative function f'(x) of a function f(x) is the function which has the value f'(a) for x = a.

The **domain** of f'(x) consists of all values of x in the domain of f(x) for which the limit defining f'(a) exists.

Last time we saw the geometric and algebraic definition of the derivative of a function f(x) at a point x = a



Definition

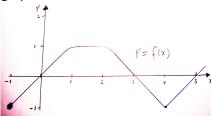
The derivative function f'(x) of a function f(x) is the function which has the value f'(a) for x = a.

The **domain** of f'(x) consists of all values of x in the domain of f(x) for which the limit defining f'(a) exists.

We say f(x) is **differentiable** on (a, b) if it is defined there. If f'(x) exists for all x in the domain of f(x) we simply say f(x) is differentiable.

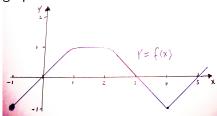
Example: (Graphical determination of the derivative)

Plot the graph of f'(x) for the function f(x) given by the following graph:



Example: (Graphical determination of the derivative)

Plot the graph of f'(x) for the function f(x) given by the following graph:



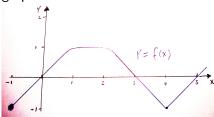
Solution:

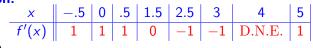
x	5	0	.5	1.5	2.5	3	4	5
f'(x)	1	1	1	0	-1	-1	D.N.E.	1

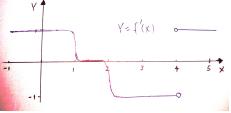
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example: (Graphical determination of the derivative)

Plot the graph of f'(x) for the function f(x) given by the following graph:







◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

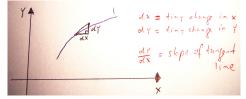
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Leibniz Notation: If y = f(x), then

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}f(x) = f'(x) = y'.$

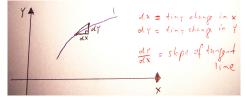
Leibniz Notation: If y = f(x), then $\frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = f'(x) = y'.$

 $\frac{dy}{dx}$ reminds us about the slope of the tangent:



Leibniz Notation: If y = f(x), then $\frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = f'(x) = y'.$

 $\frac{dy}{dx}$ reminds us about the slope of the tangent:



 $\frac{d}{dx}$ has the operator symbol meaning: "take the derivative of the function f(x)"

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution:

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

=
$$\lim_{h \to 0} \frac{h(2x+h)}{h}$$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

=
$$\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

(ロ)、(型)、(E)、(E)、 E) の(の)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2 |_{x=3}$. ("...|_{x=a}" = evaluate "... at $x = a$ ")

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$$

$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2 |_{x=3}$. ("... $|_{x=a}$ " = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2 |_{x=3}$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2 |_{x=3}$. ("...|_{x=a}" = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2 |_{x=3} = 2x |_{x=3}$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2 |_{x=3}$. ("... $|_{x=a}$ " = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2 |_{x=3} = 2x |_{x=3} = 2 \cdot 3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2 |_{x=3}$. ("...|_{x=a}" = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2 |_{x=3} = 2x |_{x=3} = 2 \cdot 3 = 6$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2 |_{x=3}$. ("... $|_{x=a}$ " = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2 |_{x=3} = 2x |_{x=3} = 2 \cdot 3 = 6$

c) Find the slope of the curve $y = x^2$ at x = -2.

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$$

$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2|_{x=3}$. ("...|_{x=a}" = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2|_{x=3} = 2x|_{x=3} = 2 \cdot 3 = 6$
c) Find the slope of the curve $y = x^2$ at $x = -2$.

Solution: $\frac{d}{dx}x^2|_{x=-2}$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$$

$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2|_{x=3}$. ("... $|_{x=a}$ " = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2|_{x=3} = 2x|_{x=3} = 2 \cdot 3 = 6$
c) Find the slope of the curve $y = x^2$ at $x = -2$.

Solution: $\frac{d}{dx} x^2 |_{x=-2} = 2x |_{x=-2}$

< ロ > < 団 > < 三 > < 三 > < 三 > の < ()

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2|_{x=3}$. ("...|_{x=a}" = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2|_{x=3} = 2x|_{x=3} = 2 \cdot 3 = 6$
c) Find the slope of the curve $y = x^2$ at $x = -2$.
Solution: $\frac{d}{dx} x^2|_{x=-2} = 2x|_{x=-2} = 2 \cdot (-2)$

Example: a) Find the derivative of $f(x) = x^2$ using the limit definition, and display the answer in Leibniz notation.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$
= $\lim_{h \to 0} \frac{h(2x+h)}{h} = 2x$
$$\frac{d}{dx} x^2 = 2x \quad \text{(Leibniz Notation)}$$

b) Find $\frac{d}{dx} x^2|_{x=3}$. ("...|_{x=a}" = evaluate "... at $x = a$ ")
Solution: $\frac{d}{dx} x^2|_{x=3} = 2x|_{x=3} = 2 \cdot 3 = 6$
c) Find the slope of the curve $y = x^2$ at $x = -2$.
Solution: $\frac{d}{dx} x^2|_{x=-2} = 2x|_{x=-2} = 2 \cdot (-2) = -4$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x} c = 0$ (c a constant)

Rule 1: $\frac{d}{dx}c = 0$ (c a constant) **Example:** a) $\frac{d}{dx}$ 17

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x} c = 0$ (c a constant)Example: a) $\frac{\mathrm{d}}{\mathrm{d}x} 17 = 0$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x} c = 0$ (c a constant)Example: a) $\frac{\mathrm{d}}{\mathrm{d}x} 17 = 0$ b) $\frac{\mathrm{d}}{\mathrm{d}x} \sqrt{2}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)Example: a) $\frac{\mathrm{d}}{\mathrm{d}x}$ 17 = 0b) $\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{2} = 0$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a)
$$\frac{d}{dx} 17 = 0$$
 b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

$$\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1} \quad \text{(where } x \text{ is defined)}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a)
$$\frac{d}{dx} 17 = 0$$
 b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

$$\frac{d}{dx} x^n = n x^{n-1} \quad (\text{where } x \text{ is defined})$$

Example: a) $\frac{d}{dx} x^7$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad (\text{where } x \text{ is defined})$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad (\text{where } x \text{ is defined})$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where } x \text{ is defined)}$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where } x \text{ is defined)}$ **Example:** a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where } x \text{ is defined)}$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where } x \text{ is defined)}$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0} = 1$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where x is defined)}$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0} = 1$ c) $\frac{d}{dx}\sqrt[3]{x}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where x is defined)}$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0} = 1$ c) $\frac{d}{dx}\sqrt[3]{x} = \frac{d}{dx}x^{1/3}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad \text{(where x is defined)}$ Example: a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0} = 1$ c) $\frac{d}{dx}\sqrt[3]{x} = \frac{d}{dx}x^{1/3} = \frac{1}{3}x^{1/3-1}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \text{ (where x is defined)}$ **Example:** a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0} = 1$ c) $\frac{d}{dx}\sqrt[3]{x} = \frac{d}{dx}x^{1/3} = \frac{1}{3}x^{1/3-1} = \frac{1}{3}x^{-2/3}$

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx} x^{n} = n x^{n-1} \quad \text{(where x is defined)}$ **Example:** a) $\frac{d}{dx} x^{7} = 7 x^{7-1} = 7 x^{6}$ b) $\frac{d}{dx} x = \frac{d}{dx} x^{1} = 1 x^{0} = 1$ c) $\frac{d}{dx} \sqrt[3]{x} = \frac{d}{dx} x^{1/3} = \frac{1}{3} x^{1/3-1} = \frac{1}{3} x^{-2/3}$ d) $\frac{d}{dx} \frac{1}{x^{5}}$

- ロ ト - 4 回 ト - 4 □ - 4

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx} x^{n} = n x^{n-1} \quad \text{(where x is defined)}$ **Example:** a) $\frac{d}{dx} x^{7} = 7 x^{7-1} = 7 x^{6}$ b) $\frac{d}{dx} x = \frac{d}{dx} x^{1} = 1 x^{0} = 1$ c) $\frac{d}{dx} \sqrt[3]{x} = \frac{d}{dx} x^{1/3} = \frac{1}{3} x^{1/3-1} = \frac{1}{3} x^{-2/3}$ d) $\frac{d}{dx} \frac{1}{x^{5}} = \frac{d}{dx} x^{-5}$

- ロ ト - 4 回 ト - 4 □ - 4

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx} x^{n} = n x^{n-1} \quad (\text{where } x \text{ is defined})$ **Example:** a) $\frac{d}{dx} x^{7} = 7 x^{7-1} = 7 x^{6}$ b) $\frac{d}{dx} x = \frac{d}{dx} x^{1} = 1 x^{0} = 1$ c) $\frac{d}{dx} \sqrt[3]{x} = \frac{d}{dx} x^{1/3} = \frac{1}{3} x^{1/3-1} = \frac{1}{3} x^{-2/3}$ d) $\frac{d}{dx} \frac{1}{x^{5}} = \frac{d}{dx} x^{-5} = -5 x^{-5-1}$

- ロ ト - 4 回 ト - 4 □ - 4

Rule 1: $\frac{\mathrm{d}}{\mathrm{d}x}c = 0$ (c a constant)

Example: a) $\frac{d}{dx} 17 = 0$ b) $\frac{d}{dx} \sqrt{2} = 0$

Rule 2: Power Rule. For every real number n

 $\frac{d}{dx}x^{n} = nx^{n-1} \quad (\text{where } x \text{ is defined})$ **Example:** a) $\frac{d}{dx}x^{7} = 7x^{7-1} = 7x^{6}$ b) $\frac{d}{dx}x = \frac{d}{dx}x^{1} = 1x^{0} = 1$ c) $\frac{d}{dx}\sqrt[3]{x} = \frac{d}{dx}x^{1/3} = \frac{1}{3}x^{1/3-1} = \frac{1}{3}x^{-2/3}$ d) $\frac{d}{dx}\frac{1}{x^{5}} = \frac{d}{dx}x^{-5} = -5x^{-5-1} = -5x^{-6}$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\pm g(x)\right)=\frac{\mathrm{d}}{\mathrm{d}x}f(x)\pm\frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example: $\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right)$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c \frac{\mathrm{d}}{\mathrm{d}x}f(x) \qquad (c \text{ a constant})$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c \frac{\mathrm{d}}{\mathrm{d}x}f(x) \qquad (c \text{ a constant})$$

Example:

a)
$$\frac{\mathrm{d}}{\mathrm{d}x}\left(7x^3-\frac{1}{x}+5\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c\,\frac{\mathrm{d}}{\mathrm{d}x}\,f(x)\qquad(c\text{ a constant})$$

Example:

a)
$$\frac{d}{dx}\left(7x^3 - \frac{1}{x} + 5\right) = \frac{d}{dx}7x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$$
 (Rule 3)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c\,\frac{\mathrm{d}}{\mathrm{d}x}\,f(x)\qquad(c\text{ a constant})$$

Example:

a)
$$\frac{d}{dx}\left(7x^3 - \frac{1}{x} + 5\right) = \frac{d}{dx}7x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$$
 (Rule 3)
= $7\frac{d}{dx}x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$ (Rule 4)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c\,\frac{\mathrm{d}}{\mathrm{d}x}\,f(x)\qquad(c\text{ a constant})$$

Example:

a)
$$\frac{d}{dx} \left(7x^3 - \frac{1}{x} + 5 \right) = \frac{d}{dx} 7x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$$
 (Rule 3)
= $7\frac{d}{dx}x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx} 5$ (Rule 4)
= $7 \cdot 3x^2 - (-1)x^{-2} + 0$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c\,\frac{\mathrm{d}}{\mathrm{d}x}\,f(x)\qquad(c\text{ a constant})$$

a)
$$\frac{d}{dx}\left(7x^3 - \frac{1}{x} + 5\right) = \frac{d}{dx}7x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$$
 (Rule 3)
= $7\frac{d}{dx}x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$ (Rule 4)
= $7 \cdot 3x^2 - (-1)x^{-2} + 0$
= $21x^2 + x^{-2}$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c\cdot f(x)\right) = c\,\frac{\mathrm{d}}{\mathrm{d}x}\,f(x)\qquad (c \text{ a constant})$$

a)
$$\frac{d}{dx}\left(7x^3 - \frac{1}{x} + 5\right) = \frac{d}{dx}7x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$$
 (Rule 3)
= $7\frac{d}{dx}x^3 - \frac{d}{dx}x^{-1} + \frac{d}{dx}5$ (Rule 4)
= $7 \cdot 3x^2 - (-1)x^{-2} + 0$
= $21x^2 + x^{-2}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

b) $\frac{\mathrm{d}}{\mathrm{d}t}\sqrt{\pi t}$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule $\frac{d}{dx} (c \cdot f(x)) = c \frac{d}{dx} f(x) \qquad (c \text{ a constant})$

Example: a) $\frac{d}{dx} \left(7x^3 - \frac{1}{x} + 5 \right) = \frac{d}{dx} 7x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$ (Rule 3) $= 7 \frac{d}{dx} x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$ (Rule 4) $= 7 \cdot 3x^2 - (-1)x^{-2} + 0$ $= 21x^2 + x^{-2}$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

b) $\frac{\mathrm{d}}{\mathrm{d}t}\sqrt{\pi t} = \sqrt{\pi} \frac{\mathrm{d}}{\mathrm{d}t} t^{1/2}$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule $\frac{d}{dx} (c \cdot f(x)) = c \frac{d}{dx} f(x) \qquad (c \text{ a constant})$

Example: a) $\frac{d}{dx} \left(7x^3 - \frac{1}{x} + 5 \right) = \frac{d}{dx} 7x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$ (Rule 3) $= 7 \frac{d}{dx} x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$ (Rule 4) $= 7 \cdot 3x^2 - (-1)x^{-2} + 0$ $= 21x^2 + x^{-2}$ b) $\frac{d}{dt} \sqrt{\pi t} = \sqrt{\pi} \frac{d}{dt} t^{1/2} = \sqrt{\pi} \frac{1}{2} t^{-1/2}$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \pm g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \pm \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

Example:
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(x^3 - x^5 \right) = \frac{\mathrm{d}}{\mathrm{d}x} x^3 - \frac{\mathrm{d}}{\mathrm{d}x} x^5 = 3x^2 - 5x^4$$

Rule 4: Constant Factor Rule $\frac{d}{dx} (c \cdot f(x)) = c \frac{d}{dx} f(x) \qquad (c \text{ a constant})$

Example: a) $\frac{d}{dx} \left(7x^3 - \frac{1}{x} + 5 \right) = \frac{d}{dx} 7x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$ (Rule 3) $= 7 \frac{d}{dx} x^3 - \frac{d}{dx} x^{-1} + \frac{d}{dx} 5$ (Rule 4) $= 7 \cdot 3x^2 - (-1)x^{-2} + 0$ $= 21x^2 + x^{-2}$ b) $\frac{d}{dt} \sqrt{\pi t} = \sqrt{\pi} \frac{d}{dt} t^{1/2} = \sqrt{\pi} \frac{1}{2} t^{-1/2} = \frac{\sqrt{\pi}}{2\sqrt{t}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right)$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)(\frac{1}{x}+x^4)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) = -2x+5x^4-7x^6$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) \\ = -2x+5\,x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x \qquad (\mathrm{e}=2.718281...)$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)(\frac{1}{x}+x^4)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) = -2x+5x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^{x} = e^{x} \qquad (\mathrm{e}=2.718281...)$$

The derivative of the exponential function is itself.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

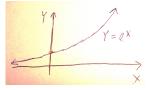
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) \\ = -2x+5x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^{x} = e^{x} \qquad (\mathrm{e}=2.718281...)$$

The derivative of the exponential function is itself.

Example: Find the slope of the curve $y = e^x$ at x = 0. Solution:



Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

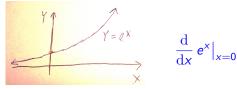
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) \\ = -2x+5x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^{x} = e^{x} \qquad (\mathrm{e}=2.718281...)$$

The derivative of the exponential function is itself.

Example: Find the slope of the curve $y = e^x$ at x = 0. Solution:



Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

Solution:

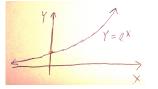
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)(\frac{1}{x}+x^4)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) = -2x+5x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x \qquad (\mathrm{e}=2.718281...)$$

The derivative of the exponential function is itself.

Example: Find the slope of the curve $y = e^x$ at x = 0. Solution:



$$\frac{\mathrm{d}}{\mathrm{d}x} \, e^x \big|_{x=0} = e^x \big|_{x=0}$$

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) \\ = -2x+5x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x \qquad (\mathrm{e}=2.718281...)$$

The derivative of the exponential function is itself.

Example: Find the slope of the curve $y = e^x$ at x = 0. Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left. e^{x} \right|_{x=0} = \left. e^{x} \right|_{x=0} = \left. e^{0} \right.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right)$$
.

Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((x-x^3)\left(\frac{1}{x}+x^4\right)\right) = \frac{\mathrm{d}}{\mathrm{d}x}\left(1-x^2+x^5-x^7\right) \\ = -2x+5x^4-7x^6$$

Rule 5: Exponential Function

$$\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x \qquad (\mathrm{e}=2.718281...)$$

The derivative of the exponential function is itself.

Example: Find the slope of the curve $y = e^x$ at x = 0. Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left. e^x \right|_{x=0} = \left. e^x \right|_{x=0} = e^0 = \mathbf{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\cdot g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \cdot g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \cdot g(x) + f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$
Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\cdot g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example:

a) $\frac{\mathrm{d}}{\mathrm{d}x}(x^7 e^x)$

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\cdot g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(x^7 e^x) = \frac{\mathrm{d}}{\mathrm{d}x}x^7 \cdot e^x + x^7 \cdot \frac{\mathrm{d}}{\mathrm{d}x}e^x$$

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\cdot g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

a)
$$\frac{\mathrm{d}}{\mathrm{d}x}(x^7 e^x) = \frac{\mathrm{d}}{\mathrm{d}x}x^7 \cdot e^x + x^7 \cdot \frac{\mathrm{d}}{\mathrm{d}x}e^x$$

= $7x^6 e^x + x^7 e^x$

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\cdot g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example: a) $\frac{\mathrm{d}}{\mathrm{d}x}(x^7 e^x) = \frac{\mathrm{d}}{\mathrm{d}x}x^7 \cdot e^x + x^7 \cdot \frac{\mathrm{d}}{\mathrm{d}x}e^x$ $= 7x^6 e^x + x^7 e^x$ $= (7x^6 + x^7)e^x$

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f(x)\cdot g(x)\right) = \frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)$$

Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example: a) $\frac{d}{dx}(x^7 e^x) = \frac{d}{dx}x^7 \cdot e^x + x^7 \cdot \frac{d}{dx}e^x$ $= 7x^6 e^x + x^7 e^x$ $= (7x^6 + x^7)e^x$ b) $\frac{d}{dx}((x - x^3)(\frac{1}{x} + x^4))$

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \cdot g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \cdot g(x) + f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$
Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example: a) $\frac{d}{dx}(x^7 e^x) = \frac{d}{dx}x^7 \cdot e^x + x^7 \cdot \frac{d}{dx}e^x$ $= 7x^6 e^x + x^7 e^x$ $= (7x^6 + x^7)e^x$ b) $\frac{d}{dx}((x - x^3)(\frac{1}{x} + x^4))$ $= \frac{d}{dx}(x - x^3) \cdot (\frac{1}{x} + x^4) + (x - x^3) \cdot \frac{d}{dx}(\frac{1}{x} + x^4)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─注 − のへで

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \cdot g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \cdot g(x) + f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$
Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example: a) $\frac{\mathrm{d}}{\mathrm{d}x}(x^7 e^x) = \frac{\mathrm{d}}{\mathrm{d}x}x^7 \cdot e^x + x^7 \cdot \frac{\mathrm{d}}{\mathrm{d}x}e^x$ $=7x^{6}e^{x} + x^{7}e^{x}$ $=(7x^{6}+x^{7})e^{x}$ b) $\frac{d}{dx}((x-x^3)(\frac{1}{x}+x^4))$ $= \frac{\mathrm{d}}{\mathrm{d}x}(x-x^3) \cdot \left(\frac{1}{x}+x^4\right) + (x-x^3) \cdot \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{x}+x^4\right)$ $= (1 - 3x^2)(x^{-1} + x^4) + (x - x^3)(-x^{-2} + 4x^3)$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ ● ● ● ●

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \cdot g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \cdot g(x) + f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$
Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example:
a)
$$\frac{d}{dx}(x^7 e^x) = \frac{d}{dx}x^7 \cdot e^x + x^7 \cdot \frac{d}{dx}e^x$$

 $= 7x^6 e^x + x^7 e^x$
 $= (7x^6 + x^7)e^x$
b) $\frac{d}{dx}((x - x^3)(\frac{1}{x} + x^4))$
 $= \frac{d}{dx}(x - x^3) \cdot (\frac{1}{x} + x^4) + (x - x^3) \cdot \frac{d}{dx}(\frac{1}{x} + x^4)$
 $= (1 - 3x^2)(x^{-1} + x^4) + (x - x^3)(-x^{-2} + 4x^3)$
 $= (x^{-1} - 3x + x^4 - 3x^6) + (-x^{-1} + x + 4x^4 - 4x^6)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Rule 6: Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(f(x) \cdot g(x) \right) = \frac{\mathrm{d}}{\mathrm{d}x} f(x) \cdot g(x) + f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$
Warning: $(f(x)g(x))' \neq f'(x) \cdot g'(x)$

Example:
a)
$$\frac{d}{dx}(x^7 e^x) = \frac{d}{dx}x^7 \cdot e^x + x^7 \cdot \frac{d}{dx}e^x$$

 $= 7x^6 e^x + x^7 e^x$
 $= (7x^6 + x^7)e^x$
b) $\frac{d}{dx}((x - x^3)(\frac{1}{x} + x^4))$
 $= \frac{d}{dx}(x - x^3) \cdot (\frac{1}{x} + x^4) + (x - x^3) \cdot \frac{d}{dx}(\frac{1}{x} + x^4)$
 $= (1 - 3x^2)(x^{-1} + x^4) + (x - x^3)(-x^{-2} + 4x^3)$
 $= (x^{-1} - 3x + x^4 - 3x^6) + (-x^{-1} + x + 4x^4 - 4x^6)$
 $= -2x + 5x^4 - 7x^6$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) - f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)}{g(x)^2}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) - f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)}{g(x)^2}$$

a)
$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{x^2-1}{2x+5}\right)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) - f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)}{g(x)^2}$$

a)
$$\frac{d}{dx} \left(\frac{x^2 - 1}{2x + 5} \right)$$

= $\frac{\frac{d}{dx} (x^2 - 1) \cdot (2x + 5) - (x^2 - 1) \cdot \frac{d}{dx} (2x + 5)}{(2x + 5)^2}$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) - f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)}{g(x)^2}$$

a)
$$\frac{d}{dx} \left(\frac{x^2 - 1}{2x + 5} \right)$$

= $\frac{\frac{d}{dx} (x^2 - 1) \cdot (2x + 5) - (x^2 - 1) \cdot \frac{d}{dx} (2x + 5)}{(2x + 5)^2}$
= $\frac{2x(2x + 5) - (x^2 - 1) \cdot 2}{(2x + 5)^2}$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x}f(x)\cdot g(x) - f(x)\cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)}{g(x)^2}$$

a)
$$\frac{d}{dx} \left(\frac{x^2 - 1}{2x + 5} \right)$$

$$= \frac{\frac{d}{dx} (x^2 - 1) \cdot (2x + 5) - (x^2 - 1) \cdot \frac{d}{dx} (2x + 5)}{(2x + 5)^2}$$

$$= \frac{2x(2x + 5) - (x^2 - 1) \cdot 2}{(2x + 5)^2}$$

$$= \frac{2x^2 + 10x + 2}{(2x + 5)^2}$$

b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{t^2 e^t}{1+t^2} \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{t^2 e^t}{1+t^2} \right)$$

= $\frac{\frac{\mathrm{d}}{\mathrm{d}t} (t^2 e^t) \cdot (1+t^2) - t^2 e^t \cdot \frac{\mathrm{d}}{\mathrm{d}t} (1+t^2)}{(1+t^2)^2}$ (q

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{t^2 e^t}{1+t^2}\right)$$

= $\frac{\frac{\mathrm{d}}{\mathrm{d}t}(t^2 e^t) \cdot (1+t^2) - t^2 e^t \cdot \frac{\mathrm{d}}{\mathrm{d}t}(1+t^2)}{(1+t^2)^2}$
= $\frac{(2te^t + t^2 e^t) \cdot (1+t^2) - t^2 e^t \cdot 2t}{(1+t^2)^2}$

(quotient first)

<□ > < @ > < E > < E > E のQ @

b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{t^2 e^t}{1+t^2}\right)$$

$$= \frac{\frac{\mathrm{d}}{\mathrm{d}t}(t^2 e^t) \cdot (1+t^2) - t^2 e^t \cdot \frac{\mathrm{d}}{\mathrm{d}t}(1+t^2)}{(1+t^2)^2}$$

$$= \frac{(2te^t + t^2 e^t) \cdot (1+t^2) - t^2 e^t \cdot 2t}{(1+t^2)^2}$$

$$= \frac{(2t+t^2+t^4)e^t}{(1+t^2)^2}$$

(quotient first)

<□ > < @ > < E > < E > E のQ @