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Section 3.1 – Definition of the Derivative

In this section we will give both a geometric and an algebraic
definition of the derivative



Geometric View of the Derivative
Recall, the slope of a line is

m =
rise
run

=
∆y

∆x
=

y2 − y1

x2 − x1
=

change in y

change in x

Definition (Tangent Line)

A tangent line is a line that (in general)

1. touches the graph at one point (near that point) and

2. has a slope equal to the slope of the curve.

If the curve is a line segment, the tangent line coincides with the
segment.

Slope of a curve at x = a equals mtan = slope of tangent line.
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Definition (Derivative — geometric)

The derivative of a function f (x) at x = a, denoted f ′(a)
(pronounced ”f prime of a”), is the slope of the curve y = f (x) at
x = a.

f ′(a) = the derivative of f(x) at a

= mtan, the slope of the tangent line.
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Example: Determine by inspection the following derivatives.

a) f ′(1) = 1 (m = 1)

b) f ′(2.2) = 0 (m = 0)

c) f ′(π) = −2 (m = ∆y
∆x = −2

1 )

d) f ′(5) = 0 (tangent m = 0)

e) What about f ′(2) and f ′(3)?

Undefined. Do not exist.

At sharp corners, f ′(a) does not exist.
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Algebraic View of the Derivative

Let us determine the slope of the curve at x = a.

Let h = tiny positive number (e.g. 0.0001)
msec = slope of the secant line shown above

=
∆y

∆x
=

f (a + h)− f (a)

h
mtan = lim

h→0
msec

Definition (Derivative — algebraic)

f ′(a) = lim
h→0

f (a + h)− f (a)

h

Memorize this!
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Example:

a) Find f ′(2) where f (x) = x2 − 2x .

b) Use part a) to find the equation of the tangent line to the curve
y = x2 − 2x at (2, 0).

Solution: a)

f ′(2) = lim
h→0

f (2 + h)− f (2)

h

= lim
h→0

[(2 + h)2 − 2(2 + h)]− [22 − 2 · 2]

h

= lim
h→0

4 + 4h + h2 − 4 + h

h

= lim
h→0

2h + h2

h
= lim

h→0
(2 + h) = 2
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Solution: b)

We use point-slope form of the tangent line:

y − y1 = m(x − x1)

y − 0 = 2(x − 2) (since m = 2 by a))

y = 2x − 4
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Example: Let f (x) =
√

x . Find f ′(a), where a is any value > 0.

Solution:

f ′(a) = lim
h→0

f (a + h)− f (a)

h

= lim
h→0

(
√

a + h −
√

a)

h
·(
√

a + h +
√

a)

(
√

a + h +
√

a)

= lim
h→0

(a + h)−
√

a
√

a + h +
√

a
√

a + h − a

h (
√

a + h +
√

a)

= lim
h→0

h

h (
√

a + h +
√

a)

= lim
h→0

1√
a + h +

√
a

=
1√

a +
√

a
=

1

2
√

a

If f (x) =
√

x = x1/2, then f ′(a) = 1
2
√

a
= 1

2 a−1/2.

We will see short cuts next time.
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Two formulas for f ′(a):

1) f ′(a) = lim
h→0

f (a + h)− f (a)

h
(as in definition)

2) f ′(a) = lim
x→a

f (x)− f (a)

x − a

2) is obtained by letting h = x − a, so x = a + h, and h→ 0 is
equivalent to x → a.

∆y

∆x
=

f (x)− f (a)

x − a
.
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Note:

We have seen that

1. if f (x) =
√

x = x1/2 then f ′(a) =
1

2
a−1/2,

2. if f (x) =
1

x
= x−1 then f ′(a) = (−1) · a−2.

What is the pattern?

Theorem (Power rule)

Let n be any real number. If f (x) = xn, then f ′(a) = n · an−1 for
any real number a where f (x) is defined.

Since a is arbitrary, we simply replace a with x (a variable) and say

f ′(x) = n xn−1.
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Note: Intuitively, f ′(a) fails to exist if either

i) f (x) has a discontinuity at x = a, or

ii) the graph of f (x) has a sharp corner at x = a.

Example:

f ′(a) does not exist since f (x) is not continuous at a.
Try to find f ′(b):

lim
x→b+

f (x)− f (b)

x − b
= 1

lim
x→b−

f (x)− f (b)

x − b
= −1

The one-sided limits are not equal.
Thus the two-sided limit f ′(b) = lim

x→b

f (x)−f (b)
x−b does not exist.
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