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Section 3.1 — Definition of the Derivative

In this section we will give both a geometric and an algebraic
definition of the derivative
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Definition (Tangent Line)
A tangent line is a line that (in general)
1. touches the graph at one point (near that point) and

2. has a slope equal to the slope of the curve.
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A tangent line is a line that (in general)
1. touches the graph at one point (near that point) and

2. has a slope equal to the slope of the curve.

If the curve is a line segment, the tangent line coincides with the
segment.
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Definition (Tangent Line)

A tangent line is a line that (in general)
1. touches the graph at one point (near that point) and
2. has a slope equal to the slope of the curve.

If the curve is a line segment, the tangent line coincides with the
segment.
Slope of a curve at x = a equals my,, = slope of tangent line.



Definition (Derivative — geometric)

The derivative of a function f(x) at x = a, denoted f'(a)
(pronounced "f prime of a”), is the slope of the curve y = f(x) at
X = a.



Definition (Derivative — geometric)
The derivative of a function f(x) at x = a, denoted f'(a)
(pronounced "f prime of a”), is the slope of the curve y = f(x) at
x = a.

f'(a) = the derivative of f(x) at a

= Myan, the slope of the tangent line.
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d) /(5) =0 (tangent m =0)
e) What about /(2) and f/(3)?
Undefined. Do not exist.



Example: Determine by inspection the following derivatives.
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a)f’()—l (m=1)

b) f'(2.2) = (m=0)

o) f(m)=-2 (m=%L==2)
)

)

d) /(5) =0 (tangent m =0)
e) What about /(2) and f/(3)?
Undefined. Do not exist.

At sharp corners, f’(a) does not exist.
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Let us determine the slope of the curve at x = a.

Let h = tiny positive number (e.g. 0.0001)
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Let us determine the slope of the curve at x = a.

Let h = tiny positive number (e.g. 0.0001)
Mgec = slope of the secant line shown above
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Let us determine the slope of the curve at x = a.

Let h = tiny positive number (e.g. 0.0001)
Mgec = slope of the secant line shown above
Ay  f(a+h)—f(a)
T Ax h
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Mgec = slope of the secant line shown above
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Let us determine the slope of the curve at x = a.

Let h = tiny positive number (e.g. 0.0001)
Mgec = slope of the secant line shown above
Ay  f(a+h)—f(a)
T Ax h

Mian = ,!'|m0 Mgec
—

Definition (Derivative — algebraic)
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Memorize this!
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a) Find f/(2) where f(x) = x? — 2x.

b) Use part a) to find the equation of the tangent line to the curve
y = x% - 2x at (2,0).

Solution: a)
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. [(2+h)? =22+ h)]—[22—2-2]
h—0 h
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We use point-slope form of the tangent line:
y =y =m(x—x)
y—0=2(x—2) (since m=2 by a))
y=2x—4



Example: Let f(x) = v/x. Find f'(a), where a is any value > 0.
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We will see short cuts next time.
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2) is obtained by letting h=x —a, so x =a-+h, and h— 0 is
equivalent to x — a.
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We have seen that
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Let n be any real number. If f(x) = x", then f'(a) = n-a""! for
any real number a where f(x) is defined.



Note:

We have seen that

1. if f(x) = v/x = x/? then f'(a) = %afl/z,

1
2. if f(x) = = = x" ! then f/(a) = (—1)-a 2.
X
What is the pattern?

Theorem (Power rule)

Let n be any real number. If f(x) = x", then f'(a) = n-a""! for
any real number a where f(x) is defined.

Since a is arbitrary, we simply replace a with x (a variable) and say

f'(x) = nx"~L.
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Note: Intuitively, f'(a) fails to exist if either
i) f(x) has a discontinuity at x = a, or
ii) the graph of f(x) has a sharp corner at x = a.

Example:
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f’(a) does not exist since f(x) is not continuous at a.
Try to find f/(b):

. f(x)—f(b)
Mo Y

i FO)—7(b) _
xl—l>r2* x—b =1

The one-sided limits are not equal.
Thus the two-sided limit /(b) = lim FX=F(®) goes not exist.

x—b




