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The calculation is usually simpler if you subtract the functions first.
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Areas by horizontal slices
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l T
A = area of region between x = f(y) and x = g(y) over the
y-interval [a, b].
Assume g(y) < f(y).

dA = area of thin horizontal slice of width dy
length - dy = (f(y) — g(y)) - dy

Az/abdaz/ab(f(y)—g(y))'dy

Same formula with y instead of x.
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Section 6.2 — Volumes by Cross-Sections
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Let A; = cross sectional area of the jt! slice.
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Section 6.2 — Volumes by Cross-Sections

Basic Problem: Determine the volume V of a solid like the one
below.
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Let A; = cross sectional area of the jt! slice.

V; = volume of the j*" slice ~ A; - Ah.
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Where A = A(h) is the cross-sectional area and h runs from a to b.



Theorem (Volume by Cross-Section Formula)

V—/abA(y)dy

where A(y) is the area of a cross-section perpendicular to the
y-axis.
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where A(x) is the area of a cross-section.

Example: Find the volume of a solid whose base is a quarter disk
or radius 5 the xy-plane as shown and such that each cross section
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If the cross-sections are perpendicular to the x-axis the formula is:

V:/abA(x)dx

where A(x) is the area of a cross-section.

Example: Find the volume of a solid whose base is a quarter disk
or radius 5 the xy-plane as shown and such that each cross section

Solution: y = /52 — x2 < x?+ y? =52, circle of radius 5.
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For some regions, the volume can be calculated in more than one
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4 4
V = Jy A(x) dx = [ $(4-2) dx = $(4z—322)];
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