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Last week we saw the Fundamental Theorem of Calculus:

Theorem (Fundamental Theorem of Calculus I)

Let f(x) be a continuous function on [a, b]. Then

where F(x) is an antiderivative of f(x).
Today we will look at an important application of this formula.

Let:
t = time
s = s(t) = quantity we are measuring as a function of t.
r(t) = s'(t) = rate of change of s with respect to t.

Theorem (Net change formula)

b
/ r(t) dt = s(b) — s(a)

N———

—— .
Integral of the rate of change r Net change in s over [a, b]
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Note, s(t) is an antiderivative of r(t) since s'(t) = r(t).
Thus by the F.T.C.:
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Example: Water is flowing into a tank at a rate of r(t) = t?
ft3 /min. How much water flows into the tank over the time
interval 1 min. to 5 min.?

Solution:

Let V = V/(t) be the volume of the water in the tank.

Then V/(t) = r(t) = t°.

V(5) = V(1) :/15r(t)dt:/15t2dt
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From min. 1 to min. 5 there flows a total of % ft3 into the tank.
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Solution:

Let E(t) be the energy consumed (in joule).
Then E’(t) = P(t) is the rate of energy consumed (in joule/hr).
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fo-2]-p-2)-e

7T 7T

0

During one day the appliance consumes 48 joules.
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v [J'-"“) ‘ Displacement = A-B

Total Distance = A+ B

A moving right, B moving left
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Example: The acceleration of an object traveling on a straight line
is given by a(t) = 3 €2 m/sec? where t is the time in seconds.
Find the change in velocity over the time interval [1, 3] seconds.

Solution:

3
Change in velocity = v(3) — v(1) = / a(t) dt
1

3
= / 3e?t dt
1

3
:3e2f.1
21
3 3
2566_562
3 2.4
== —1).
Se(et 1)

The velocity changes by 2e?(e* — 1) m/sec over the time interval
from one 1 to 3 seconds.
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Marginal Cost

Let x be the number of items of a product a company makes.

Let C(x) be the cost to make x items.

C’(x) is called the marginal cost ~ the cost to produce one more
item if currently x items are produced.

C@p:qx+?‘c“):cu+ncu)

Example: What is the cost to produce 20 items if the set-up cost
is $1000 and C’(x) = 100 — 20x + x2?
Solution:

C(20) — C(0) = /020 c(x)dx = /020(100 — 20x 4 x?) dx

X3 20
= <1oox-1ox2+->
3 0
2
= 2000 — 40004—§g§9 2?0
2000 2000 5000
C(20)::4f§4—+»C(0) = 1000__47§f.

The total cost of producing 20 items is $1,666.67.



