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We have seen two types of integrals:
1. Indefinite: /f(x) dx = F(x)+ C

where F(x) is an antiderivative of f(x).

b
2. Definite: / f(x) dx = signed area bounded by f(x) over [a, b].

Theorem (Fundamental Theorem of Calculus I)

Let f(x) be a continuous function on [a, b]. Then

where F(x) is an antiderivative of f(x).

Note: The result is independent of the chosen antiderivative F(x).
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We have three ways of evaluating definite integrals:

1. Use of area formulas if they are available.
(This is what we did last lecture.)
2. Use of the Fundamental Theorem of Calculus (F.T.C.)

3. Use of the Riemann sum lim >7 , f(x;)Ax

(This we will not do in this course.)
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/2
/ sin(3x) dx.
0

Solution:
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0
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Example: Evaluate using the F.T.C.

/2
/ sin(3x) dx.
0
Solution:
w/2 1 w/2
/ sin(3x) dx = —cos(3x) - =
0 3 0
1 3r 1
=3 cos(?) - (- 3 cos(0))
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=0+3=2
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Let f(t) be a continuous function on [a, b].
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Let x be a point with a < x < b.

X

Let A(x) = / f(t) dt = Signed Area bounded by f(t) over [a, x].
Goal: Find tﬁae rate that the area A(x) increases or decreases, that
is, find 94.
Let dx = infinitesimal change in x.

dA = resulting change in the area

dA = height x base = f(x) - dx.

Thus: Z—'j = % (/ax f(t) dt> = f(x).



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have

i X
dx J,

where f(x) is the evaluation of f(t) at x.

f(t)dt = f(x)



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have

i X
dx J,

where f(x) is the evaluation of f(t) at x.

f(t)dt = f(x)

“The derivative of the integral of a function is the function.”



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have

i X
dx J,

where f(x) is the evaluation of f(t) at x.

f(t)dt = f(x)

“The derivative of the integral of a function is the function.”

Example: Find d/ e’ - cos(5t) dt
dx 2



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have

d X

2 [ f
dx

where f(x) is the evaluation of f(t) at x.

“The derivative of the integral of a function is the function.”

Example: Find / - cos(5t) dt

Solution: / - cos(5t) dt = € cos(5x), by F.T.C. II.



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have

d X

2 [ f
dx

where f(x) is the evaluation of f(t) at x.

“The derivative of the integral of a function is the function.”

Example: Find / - cos(5t) dt
Solution: / - cos(5t) dt = € cos(5x), by F.T.C. II.

1
Example: Find a B 211 dt



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have

d X

2 [ f
dx

where f(x) is the evaluation of f(t) at x.

“The derivative of the integral of a function is the function.”
Example: Find / - cos(5t) dt

Solution: / - cos(5t) dt = € cos(5x), by F.T.C. II.

1
Example: Find a B 211 dt

) d (Y 1
SOIUt'On: du/31_'2—|—]_dt



Theorem (Fundamental Theorem of Calculus II)

Let f(x) be a continuous function on [a, b]. Then for any x in
(a, b) we have
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2 [ f
dx

where f(x) is the evaluation of f(t) at x.

“The derivative of the integral of a function is the function.”
Example: Find / - cos(5t) dt

Solution: / - cos(5t) dt = € cos(5x), by F.T.C. II.

1
Example: Find a B 211 dt

d v 1 1
lution: — [ —=—dt=——— byFT.CIL
Solution du/3t2+1 23 WETC
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Flipping the limits of integration

Definition
Let f(x) be a continuous function on [a, b]. Then

/ba F(x) dx := /ab f(x) dx.

d a
It follows that — [ f(t)dt = —f(x).
ollows tha dx/x (1) (x)

When variable is lower limit insert (-) sign.

Example: Find / sin t2 dt

Solution:

5
:/ sin t2 dt
X X
d X
= — <—/ sin t2 dt>
dX 5

= —sin x2
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a) 5;/3 f(x)dx = f(t).
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Concept of the “dummy” variable

x B 3 53
Let F(x)= [ t?dt=—| =5 -5
a) Let F(x) /a 3.7 3 3
t is a dummy variable
x 3% 3 3
by Let F(x)= | wPdu=—2| =2 2
) Let F(x) /au u=3 T3 3

u is a dummy variable.

We see that F(x) = G(x). The name of the dummy variable plays
no role for the value of the integral.
Example: Find:
d t
a)

i@t /s f(x)dx = f(t).

b) ;i/:f(t)dt:f(x).
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An extension of the F.T.C. Il

d &x) ; . ,
o /. (t) dt = f(g(x)) - &'(x)
Indeed, let F(x f f(t) dt. Then the chain rule gives:

d%F(g(X)) = F'(g(x)) - &'(x) = f(g(x)) - &'(%).

d
Example: Find — _—
P dx/2 Vit 1

1 d 2
Solution: x2 = X

d
dx/2 VE+l V241 & T x+1

d [*
Example: Find — / cos t? dt.
dx J,

d [ d [? d [
Solution: — / cost?dt = — / cost? dt + — / cos t2 dt
dx J, dx J, dx J,

d
= —cosx? + cos((x*)?) - ax3



An extension of the F.T.C. Il
d &) f(t)ydt="f '
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Indeed, let F(x) = [ f(t) dt. Then the chain rule gives:

d%F(g(X)) = F'(g(x)) - &'(x) = f(g(x)) - &'(%).
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Example: Find — _—
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1 d 2
Solution: x2 = X

d
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Example: Find / cos t2 dt.

Solution: / cos t2 dt = / cost dt+/ cos t2 dt

= —cosx? + cos((x*)?) - = 3x% cos x® — cos x?

dx
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We have seen two ways to find an antiderivative of f(x):

1. Use our known formulas for derivatives and work backwards:
Let F(x) be such that F'(x) = f(x).
2. Use a definite integral: Let

/fdt

Then A'(x) = f(x) and A(a) = 0.

We have also seen that any two antiderivatives must differ by a
constant. Thus:

Let us find C:
Ala)=0=F(a)+C = C=—F(a).



We have seen two ways to find an antiderivative of f(x):
1. Use our known formulas for derivatives and work backwards:
Let F(x) be such that F'(x) = f(x).
2. Use a definite integral: Let

/fdt

Then A'(x) = f(x) and A(a) = 0.

We have also seen that any two antiderivatives must differ by a
constant. Thus:

Let us find C:
A(a) =0
Thus: A(x) = F(x) — F(a).
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Thus: A(x) = F(x) — F(a).

b
Therefore: / f(t)dt = A(b) = F(b) — F(a).
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1. Use our known formulas for derivatives and work backwards:
Let F(x) be such that F'(x) = f(x).
2. Use a definite integral: Let
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Then A'(x) = f(x) and A(a) = 0.

We have also seen that any two antiderivatives must differ by a
constant. Thus:

Let us find C:
A(a) =0
Thus: A(x) = F(x) — F(a).
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b
Therefore: / f(t)dt = A(b) = F(b) — F(a).

This is the F.T.C. |



