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Example: Estimate the area under the curve y = x~ over the

interval [0, 2].
Solution: Divide the interval [0,2] into n equal pieces of length
2/n and estimate the area using rectangles.

R, = estimate using right end-points
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Section 5.1. — Areas below curves

Example: Estimate the area under the curve y = x?

over the
interval [0, 2].

Solution: Divide the interval [0,2] into n equal pieces of length
2/n and estimate the area using rectangles.

R, = estimate using right end-points
L, = estimate using left end-points
Let n = 4. So we have 4 equal pieces.
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Section 5.1. — Areas below curves

Example: Estimate the area under the curve y = x? over the
interval [0, 2].

Solution: Divide the interval [0,2] into n equal pieces of length
2/n and estimate the area using rectangles.
R, = estimate using right end-points
L, = estimate using left end-points
Let n = 4. So we have 4 equal pieces.
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To get more accuracy we partition the interval into more pieces.

Ln
413.75 1.75
10 | 3.08 2.28
100 | 2.7068 | 2.627
1000 | 2.6707 | 2.6627
10000 | 2.6671 | 2.6663
1000000 | 2.66667 | 2.66667

Actual Area = Iim R, = lim L, = 2%.
n—oo

n—oo

We'll see a simple way of calculating this next time using
antiderivatives!
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Midpoint Approximation:

M,, = Approximation of area using the midpoint of each
interval.

Example: Estimate the area bounded by y = \/x over the interval
[1,7] using M.

Solution:

Divide the interval into 3 equal pieces:
[1,3], [3,5], [5,7].

M3 = sum of areas of rectangles
= 2-V2 +2.24+2-6
——

basexheight

=2-(vV2+2+6)



Example: An object moves along a straight line with
s = s(t) = position
v = v(t) = velocity

, " e

—t 4 + 3 Y ¢

Q

Estimate the distance the object travels during the time interval
[0, 6] if the velocity is given by
t(sec) ||0[1]2]3]4]5]|6
v(m/sec)H0‘3‘5‘4‘5‘2‘1
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a) using R3:Divide [0, 6] into 3 equal pieces and use right
endpoints for distance estimate:
R3=2-54+2-5+4+2-1
02 [24] [46]
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Example: An object moves along a straight line with
s = s(t) = position
v = v(t) = velocity
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Estimate the distance the object travels during the time interval
[0, 6] if the velocity is given by
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Example: An object moves along a straight line with
s = s(t) = position
v = v(t) = velocity
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Estimate the distance the object travels during the time interval
[0, 6] if the velocity is given by
t(sec) ||0[1]2]3]4]5]|6
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a) using R3:Divide [0, 6] into 3 equal pieces and use right
endpoints for distance estimate:

R3:2-5+2\-/§+2-1
[0,2] [2,4] [4.6]

=10+10+2= 22m

b) using M3:Use midpoints
My=3-2+44.2+42.2
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Example: An object moves along a straight line with
s = s(t) = position
v = v(t) = velocity
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Estimate the distance the object travels during the time interval
[0, 6] if the velocity is given by
t(sec) ||0[1]2]3]4]5]|6
v(m/sec)H0‘3‘5‘4‘5‘2‘1

a) using R3:Divide [0, 6] into 3 equal pieces and use right
endpoints for distance estimate:

R3:2-5+2\-/§+2-1
[0,2] [2,4] [4.6]

=104+104+2= 22m
b) using M3:Use midpoints
My=3-2+4-2+4+2.2
=6+8+4= 18m
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Section 5.2 - Riemann Sums and Definite Integrals

Let f(x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length Ax =
n

Let x; = a+ i - Ax = right end-point of the i*" piece.

R, = Riemann Sum using right end-points
=f(x1) - Ax+f(x) - Ax+ -+ f(x,) - Ax+ -+ f(x,) - Ax

n

= Z f(x;) - Ax
i=1 T~
~—~ i-th term in sum
sum as i goes
from1lton

~ Area above x-axis bounded by f(x) (where f(x) is positive)
— Area below x-axis bounded by f(x) (where f(x) is negative)
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Theorem: The definite integral exists, that is, the above limit
exists, for any continuous function on [a, b]



Definition
The definite integral of f(x) over the interval [a, b] is given by

/b f(x)dx = n||_>n;O (2’1: f(xi) - AX).

b
/ f(x) dx = "Integral of f(x) from a to b"
a

n
lim (Z f(xi) - Ax> = "Limit of the Riemann sums as n — c0.”
i=1

n—oo

Theorem: The definite integral exists, that is, the above limit
exists, for any continuous function on [a, b]
Theorem: The definite integral equals

the area above x-axis bounded by f(x) over [a, b]
- the area below x-axis bounded by f(x) over [a, b]

also called the “signed” area.
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3
/ V9 — x2 dx.
0
Solution:
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y=vV9-x2=y>=9-x>= x>+ 2 =9=32

3
/ V9 — x2 dx = Area of quarter circle of radius 3
0
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= Z(Tr -32)
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3
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Solution:
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y=vV9-x2=y>=9-x>= x>+ 2 =9=32
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/ V9 — x2 dx = Area of quarter circle of radius 3
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2
/ sin x dx.
0

Solution:

2w
/ sin x dx = Signed Area
0

—A-A
=0
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Properties of the definite integral

1) Constant factor rule:

/abc~f(x)dx:c-/abf(x)dx

2) Sum & difference rule:
b b
/a (F(x) + g(x)) dx = / F(x) dx i/ 2(x) dx

3) Additivity rule:
Suppose a < b < c¢. Then

/ab f(x) dx+/: F(x) dx
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0 0
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Example: Given that / x? dx = %, for any a > 0, find:
0

3
a)/ 7x2 dx,
0
5
b)/ x? dx.
1

Solution:
3 3
a) / X% dx =7 / x? dx (using rule 1)
0 0
33
=7- 3= 63 (using given formula)
5 5 1
b) / 7x2dx = / x% dx —/ x? dx (using rule 3)
1 0 0
U1 (using given formula)
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