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Section 5.1. — Areas below curves

Example: Estimate the area under the curve y = x2 over the
interval [0, 2].

Solution: Divide the interval [0, 2] into n equal pieces of length
2/n and estimate the area using rectangles.

Rn = estimate using right end-points
Ln = estimate using left end-points

Let n = 4. So we have 4 equal pieces.
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To get more accuracy we partition the interval into more pieces.

n Rn Ln

4 3.75 1.75
10 3.08 2.28

100 2.7068 2.627
1000 2.6707 2.6627

10000 2.6671 2.6663
1000000 2.66667 2.66667

Actual Area = lim
n→∞

Rn = lim
n→∞

Ln = 22
3 .

We’ll see a simple way of calculating this next time using
antiderivatives!
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Midpoint Approximation:

Mn = Approximation of area using the midpoint of each
interval.

Example: Estimate the area bounded by y =
√

x over the interval
[1, 7] using M3.

Solution:

Divide the interval into 3 equal pieces:
[1, 3], [3, 5], [5, 7].

M3 = sum of areas of rectangles

= 2 ·
√

2︸ ︷︷ ︸
base×height

+2 · 2 + 2 ·
√

6

= 2 · (
√

2 + 2 +
√

6)
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Example: An object moves along a straight line with

s = s(t) = position
v = v(t) = velocity

Estimate the distance the object travels during the time interval
[0, 6] if the velocity is given by

t(sec) 0 1 2 3 4 5 6

v(m/sec) 0 3 5 4 5 2 1

a) using R3:Divide [0, 6] into 3 equal pieces and use right
endpoints for distance estimate:

R3 = 2 · 5︸︷︷︸
[0,2]

+ 2 · 5︸︷︷︸
[2,4]

+ 2 · 1︸︷︷︸
[4,6]

= 10 + 10 + 2 = 22 m

b) using M3:Use midpoints
M3 = 3 · 2 + 4 · 2 + 2 · 2

= 6 + 8 + 4 = 18 m
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Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Section 5.2 - Riemann Sums and Definite Integrals
Let f (x) be a continuous function on [a, b].

Divide [a, b] into n equal pieces, each of length ∆x =
b − a

n
.

Let xi = a + i ·∆x = right end-point of the i th piece.

Rn = Riemann Sum using right end-points

= f (x1) ·∆x + f (x2) ·∆x + · · ·+ f (xr ) ·∆x + · · ·+ f (xn) ·∆x

=
n∑

i=1︸︷︷︸
sum as i goes
from 1 to n

f (xi ) ·∆x︸ ︷︷ ︸
i-th term in sum

≈ Area above x-axis bounded by f (x) (where f (x) is positive)
− Area below x-axis bounded by f (x) (where f (x) is negative)



Definition
The definite integral of f (x) over the interval [a, b] is given by∫ b

a
f (x) dx = lim

n→∞

(
n∑

i=1

f (xi ) ·∆x

)
.

∫ b

a
f (x) dx = “Integral of f (x) from a to b”

lim
n→∞

(
n∑

i=1

f (xi ) ·∆x

)
= “Limit of the Riemann sums as n→∞.”

Theorem: The definite integral exists, that is, the above limit
exists, for any continuous function on [a, b]

Theorem: The definite integral equals

the area above x-axis bounded by f (x) over [a, b]
- the area below x-axis bounded by f (x) over [a, b]

also called the “signed” area.
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Example: Evaluate

∫ 5

0
f (x) dx for the function below, using the

signed area interpretation.

f (x) =

{
x , 0 ≤ x ≤ 2

4− x , x > 2.

Solution:

A1 = physical area A2 = physical area∫ 5

0
f (x) dx = A1 − A2

= 1
2 · base · height− 1

2 · base · height
= 1

2 ·+4 · 2− 1
2 · 1 · 1

= 4− 1
2 = 7

2
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Example: Evaluate using signed areas:∫ 3

0

√
9− x2 dx .

Solution:

y =
√

9− x2 ⇒ y2 = 9− x2 ⇒ x2 + y2 = 9 = 32∫ 3

0

√
9− x2 dx = Area of quarter circle of radius 3

=
1

4
(π · 32) =

9

4
π
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Example: Evaluate using signed areas:∫ 2π

0
sin x dx .

Solution:

∫ 2π

0
sin x dx = Signed Area

= A− A

= 0
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Properties of the definite integral

1) Constant factor rule:∫ b

a
c · f (x) dx = c ·

∫ b

a
f (x) dx

2) Sum & difference rule:∫ b

a
(f (x)± g(x)) dx =

∫ b

a
f (x) dx ±

∫ b

a
g(x) dx

3) Additivity rule:

Suppose a < b < c . Then∫ b

a
f (x) dx +

∫ c

b
f (x) dx =

∫ c

a
f (x) dx
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Example: Given that

∫ a

0
x2 dx =

a3

3
, for any a > 0, find:

a)

∫ 3

0
7x2 dx ,

b)

∫ 5

1
x2 dx .

Solution:

a)

∫ 3

0
7x2 dx = 7 ·

∫ 3

0
x2 dx (using rule 1)

= 7 · 33

3
= 63 (using given formula)

b)

∫ 5

1
7x2 dx =

∫ 5

0
x2 dx −

∫ 1

0
x2 dx (using rule 3)

=
53

3
− 13

3
=

124

3
(using given formula)
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