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Example: Use logarithmic differentiation to find % for
y = XX(X2 + 1)5/2.

Solution:

In(x*) + In ((x2 v 1)5/2)

5
xlnx+§|n(x2+1)
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P (xInx) + o (2 In(x< + 1))
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Example: Find the tangent line to the curve x?y? = y? + 3 at

(2,1).
Solution:
d 2 3\ __ d 2

2x - y3 4+ x2.3y%2 .y =2y .y
x2-3y?.y =2y .yl = —2x.y?
(3x%-y? = 2y)y' = —2x- 3
’ —2X-y3
© 3x2y2 — 2y

-2.2-13 -4 2
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y

X—l—%

[6,11)8]

Tangent line: y — 1 = —%(x —2)ory =—
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Example: Find the tangent line of f(x) = /x at x = 27 and use

use it to approximate v/27.1

Solution:
f(x) = x/3, f(27) =3

/ _ E -2/3 ! _ E —-2/3 _ 1 _ i
f(x)—3x , f(27)_3 (27) =332

Tangent line: L(x) = f(a) + f'(a)(x — a)
L(x) =3+ %(X —27)
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increases 2 ft/min while the radius increases 3 ft/min. At what
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Definition

A point c in the domain of a function f(x)
if either
1. f'(c)=0

is called a critical point
(horizontal tangent)

2. or f'(c) does not exist.

DA
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If f(c) is a local maximum or minimum, then c is a critical point
of f(x).

Theorem
Suppose that f(x) is continuous on the closed interval [a, b]. Then
f(x) attains its absolute maximum and minimum values on |a, b]
at either:

» A critical point

» or one of the end points a or b.
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Example:

a) Find the critical points for the function f(x) = 3x — x>.
b) Find the maximal and minimal values of f(x) = 3x — x3 on the
interval [—1, 3].

Solution:

a) f'(x) =3 —3x% =3(1 — x?)
f'(x) = 0 when x? = 1 or x = +1.
f'(x) exists for all real numbers.

The only critical points are £1.

b) We make a table with the critical points inside the interval and

its endpoints.

X ‘3X—X3

1 |3—-1=2

1| -3—-(-1)=-2

3 13.3-3%=-18
Maximal value is 2 at x = 1,
Minimal value is —18 at x = 3.
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Monotony:

f'(x) > 0 = f(x) increasing: If a < b then f(a) < f(b)
f'(x) < 0 = f(x) decreasing: If a < b then f(a) > f(b)
Local extrema: Appear at points ¢ in the domain of f(x) where
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Inflection point test:
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at x = c.
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Concavity:

f"(x) > 0 = f(x) concave up: f'(x) increasing:

f"(x) < 0 = f(x) concave down: f’(x) decreasing:
Inflection points: Points (x, f(x)) where the graph of f(x)
changes its concavity.

Inflection point test:

Let f”(c) = 0.

If ”(x) changes its sign at x = ¢ then f(x) has a inflection point
at x = c.

Second derivative test:

Let f'(c) = 0. Then:

f"(c) <0 = f(c) is a local maximum
f"(c) > 0 = f(c) is a local minimum

Transition points: Points where f/(x) or f”/(x) has a sign change.
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Example: Sketch the graph of y = x(8 — x)/3.

Solution:
1. All real numbers.
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1. Draw Picture, label variables.

2. Restate the problem:
» What is given?
» Which variable should be maximized or minimized?
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6. Find the absolute Minima or Maxima.



7-Step Procedure for Applied Maximum/Minimum Problems:

1. Draw Picture, label variables.
2. Restate the problem:
» What is given?
» Which variable should be maximized or minimized?

3. Find the relationship between variables:

Geometric Formula, Trigonometric equation, Pythagorean
theorem, etc.

4. Express the quantity being maximized or minimized in terms
of a single variable.

5. Find the critical points (f'(x) = 0 or not defined).
6. Find the absolute Minima or Maxima.

7. Compute the remaining variables (if asked for) and state the
answer in a sentence.



Example: A right circular cylinder is inscribed in a right circular
cone. Find the dimensions that maximize the volume of the
cylinder.
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v R

=T [2(H — h)(=1)h+ (H — h)*] =0



av _ R
=T [2(H — h)(=1)h+ (H — h)*] =0

& (H=h)[-2h+(H—h)] = (H—h)[H—3h =0



dv R?2
5. — =7z [2(H=h)(=1)h +(H—-hy’] =0

< (H—-h)[-2h+(H—h)]=(H—-h)[H—-3h] =0
&S h=HorH-3h=0, h—fH
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h= %H is the absolute maximum.
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| %—ﬂ%[ 2(H — h)(—1)h+ (H— b2 =0
e (H— h)[=2h+ (H— h)] = (H— h)[H —3h] =0

& h=HorH-3h=0, h=1H.

6. Since V=0for h=00r h=H and V > 0 for h between,
h= %H is the absolute maximum.

7.r=F(H-1H)=2R
The volume of the cyllnder is maximized for the height h = %H
and radius r = %R.



