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Recall that there are two main parts of Calculus

1. Derivatives: Measures instantaneous change
2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the
reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f (x) is function F (x)
such that F ′(x) = f (x).

Example: Find an antiderivative of x3, by trial and error.

Solution: Initial guess: x4 (since derivation decreases the degree
of a power function by 1):

d
dx

x4 = 4 x3.

Thus:
d
dx

(
1

4
x4) =

1

4
(4x3) = x3.

Note:
d
dx

(
1

4
x4 − 7) = x3

All functions F (x) = 1
4 x4 + C , C any constant, are antiderivatives.
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Did we find all antiderivatives?

Theorem
Let F (x) be an antiderivative of the function f (x) defined on
(a, b). Then any antiderivative on (a, b) of f (x) is of the form
F (x) + C for some constant C .

Proof: Let G (x) be another antiderivative of F (x). Set
H(x) = G (x)− F (x). Then

H ′(x) = G ′(x)− F ′(x) = f (x)− f (x) = 0.

We claim that H(x) must be a constant function. For, if it would
be not, there exist (at least) two points x = u and x = v in (a, b)
with H(u) 6= H(v). By the mean value theorem there exists then a
point x = c in (u, v) such that

H(u)− H(v)

u − v
= H ′(c).

But since H(u) 6= H(v) this would mean H ′(c) 6= 0, a
contradiction. Thus H(x) = C for some constant C . This implies
G (x) = F (x) + C . q.e.d.
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Definition (Indefinite Integral)

The indefinite integral or general antiderivative
∫

f (x)dx of a
function f (x) stands for all possible antiderivatives of f (x) defined
on an interval, i.e.∫

f (x) dx = F (x) + C , where C is a constant

and F (x) is an arbitrary antiderivative of f (x).

Notation: In the expression

∫
f (x)dx , the function f (x) is called

the integrand and dx is a differential (in its symbolic meaning).
The constant C as above is called the constant of integration.

The indefinite integral should not be confused with the definite
integral

∫ b
a f (x) dx which we will consider next week and is

defined as a limit of a sum. The symbol
∫

is a stretched S and
reminds about the Sum. We will also explain the relation between
the indefinite and the definite integral.
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Power Rule: The indefinite integral of a power function
f (x) = xn, where n 6= −1 is∫

xn dx =
1

n + 1
xn+1 + C .

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a) f (x) = x13

∫
f (x) dx =

x14

14
+ C

b) f (x) =
√

x= x1/2

∫
f (x) dx =

x3/2

3/2
+ C =

2x3/2

3
+ C

c) f (x) =
1

x3
= x−3

∫
f (x) dx =

x−2

−2
+ C = − 1

2x2
+ C

d) f (x) = 1= x0

∫
f (x) dx = x + C
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Proof by derivation.
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Guess and Fudge Method

Example: Find an antiderivative of cos(3x).

Solution:
Since

∫
cos xdx = sin x + C we try sin(3x) with fudge factor 1

3 :
1
3 sin(3x). Indeed (1

3 sin(3x))′ = 1
3 cos(3x) · 3 = cos(3x).

So 1
3 sin(3x) is an antiderivative.

The guess and fudge method applies to functions of the form
f (ax + b), where a and b are constants.∫

f (ax + b)dx =
1

a
F (ax + b) + C

where F (x) is an antiderivative of f (x).

Example:

a)

∫
sin(2x − π)dx = −1

2
cos(2x − π) + C

b)

∫
e5−3xdx = −1

3
e5−3x + C
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Rules for the indefinite integral

1) Constant factor rule:∫
k · f (x) dx = k ·

∫
f (x) dx

Proof: (kF (x))′ = k · F ′(x).

2) Sum and difference rule:∫
(f (x)± g(x)) dx =

∫
f (x) dx ±

∫
g(x) dx

Proof: (F (x)± G (X ))′ = F ′(x)± G ′(x).
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Example: Find

∫
(e3x + 7x−1) dx .

Solution:

=

∫
e3x dx + 7

∫
x−1 dx by rule 1) and 2)

=
1

3
e3x + 7 ln |x |+ C

Example: Find

∫ (
1

x − 2
+ (3x + 7)5

)
dx .

Solution:

= ln |x − 2|+ (3x + 7)6

6 · 3
+ C

Example: Find

∫
dx

1 + x2

Solution:

=

∫ (
1

1 + x2

)
dx

= arctan x + C
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Application to differential equations

Example: Find a function f (x) such that

f ′(x) = 6x(1− x) and f (0) = 1.

Solution:

f (x) is an antiderivative of 6x(1− x). Thus:

f (x) =

∫
6x(1− x) dx

=

∫
(6x − 6x2) dx

= 6 · x2

2
− 6 · x3

3
+ C

= 3x2 − 2x3 + C

When x = 0: f (0) = 1

⇔ 3 · 0− 2 · 0 + C = 1⇔ C = 1.

f (x) = 3x2 − 2x3 + 1
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Example: A body falls to the ground. During the fall, it feels a
constant acceleration of g where g = 32 ft/sec2. At time t = 0 the
body has the height y0 and the velocity v0. Find a formula for the
the height y in terms of t.
Solution:

Let y = y(t) be the height function, v = v(t) = dy
dt be the velocity

function and a = a(t) = dv
dt be the acceleration function.

We have a(t) = −g (downward acceleration).

Since v is an antiderivative of a(t) one has:

v =

∫
−g dt = −g

∫
1 dt = −gt + C

v(0) = v0 ⇒ 0 + C = v0 ⇒ C = v0

Thus: v = −gt + v0.

Since y is an antiderivative of v(t) one has:

y =

∫
(−gt + v0) dt = −g

t2

2
+ v0t + C

y(0) = y0 ⇒ 0 + 0 + C = y0 ⇒ C = y0

Thus: y = g t2

2 + v0t + y0.
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