Calculus I - Lecture 20 - The Indefinite Integral

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus:

http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

April 6, 2014

Reminder: Exam 3 on Thursday, April 10. Review in Wednesday's Lecture Practice Exam online on course homepage

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1. Derivatives: Measures instantaneous change

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2. Integrals: Measures cumulative amounts

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

$$\frac{\mathrm{d}}{\mathrm{d}x}x^4 = 4x^3.$$

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

$$\frac{\mathrm{d}}{\mathrm{d}x}x^4 = 4x^3.$$

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

$$\frac{d}{dx}x^{4} = 4x^{3}.$$

Thus: $\frac{d}{dx}(\frac{1}{4}x^{4}) = \frac{1}{4}(4x^{3}) = x^{3}.$

- 1. Derivatives: Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

$$\frac{\mathrm{d}}{\mathrm{d}x}x^4 = 4x^3.$$

Thus: $\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}x^4) = \frac{1}{4}(4x^3) = x^3$
Note: $\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}x^4 - 7) = x^3$

- 1. **Derivatives:** Measures instantaneous change
- 2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x)such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

$$\frac{d}{dx}x^4 = 4x^3.$$
Thus: $\frac{d}{dx}(\frac{1}{4}x^4) = \frac{1}{4}(4x^3) = x^3.$
Note: $\frac{d}{dx}(\frac{1}{4}x^4 - 7) = x^3$
All functions $F(x) = \frac{1}{4}x^4 + C$, C any constant, are antiderivatives.

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x).

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.

We claim that H(x) must be a constant function.

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0. We claim that H(x) must be a constant function. For, if it would

be not, there exist (at least) two points x = u and x = v in (a, b) with $H(u) \neq H(v)$.

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.

We claim that H(x) must be a constant function. For, if it would be not, there exist (at least) two points x = u and x = v in (a, b)with $H(u) \neq H(v)$. By the mean value theorem there exists then a point x = c in (u, v) such that

$$\frac{H(u)-H(v)}{u-v}=H'(c).$$

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then

$$H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.$$

We claim that H(x) must be a constant function. For, if it would be not, there exist (at least) two points x = u and x = v in (a, b)with $H(u) \neq H(v)$. By the mean value theorem there exists then a point x = c in (u, v) such that

$$\frac{H(u)-H(v)}{u-v}=H'(c).$$

But since $H(u) \neq H(v)$ this would mean $H'(c) \neq 0$, a contradiction.

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then

$$H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.$$

We claim that H(x) must be a constant function. For, if it would be not, there exist (at least) two points x = u and x = v in (a, b)with $H(u) \neq H(v)$. By the mean value theorem there exists then a point x = c in (u, v) such that

$$\frac{H(u)-H(v)}{u-v}=H'(c).$$

But since $H(u) \neq H(v)$ this would mean $H'(c) \neq 0$, a contradiction. Thus H(x) = C for some constant C. This implies G(x) = F(x) + C.

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then

$$H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.$$

We claim that H(x) must be a constant function. For, if it would be not, there exist (at least) two points x = u and x = v in (a, b)with $H(u) \neq H(v)$. By the mean value theorem there exists then a point x = c in (u, v) such that

$$\frac{H(u)-H(v)}{u-v}=H'(c).$$

But since $H(u) \neq H(v)$ this would mean $H'(c) \neq 0$, a contradiction. Thus H(x) = C for some constant C. This implies G(x) = F(x) + C. q.e.d.

Definition (Indefinite Integral)

The indefinite integral or general antiderivative $\int f(x) dx$ of a function f(x) stands for all possible antiderivatives of f(x) defined on an interval, i.e.

$$\int f(x) \, \mathrm{d}x = F(x) + C$$
, where C is a constant

and F(x) is an arbitrary antiderivative of f(x).

Definition (Indefinite Integral)

The indefinite integral or general antiderivative $\int f(x) dx$ of a function f(x) stands for all possible antiderivatives of f(x) defined on an interval, i.e.

$$\int f(x) \, \mathrm{d}x = F(x) + C$$
, where C is a constant

and F(x) is an arbitrary antiderivative of f(x).

Notation: In the expression $\int f(x)dx$, the function f(x) is called the **integrand** and dx is a differential (in its symbolic meaning). The constant *C* as above is called the **constant of integration**.

Definition (Indefinite Integral)

The indefinite integral or general antiderivative $\int f(x) dx$ of a function f(x) stands for all possible antiderivatives of f(x) defined on an interval, i.e.

$$\int f(x) \, \mathrm{d}x = F(x) + C$$
, where C is a constant

and F(x) is an arbitrary antiderivative of f(x).

Notation: In the expression $\int f(x)dx$, the function f(x) is called the **integrand** and dx is a differential (in its symbolic meaning). The constant *C* as above is called the **constant of integration**.

The indefinite integral should not be confused with the **definite** integral $\int_{a}^{b} f(x) dx$ which we will consider next week and is defined as a limit of a sum. The symbol \int is a stretched **S** and reminds about the **S**um. We will also explain the relation between the indefinite and the definite integral.

Raise the exponent by 1 and divide by the raised exponent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a) $f(x) = x^{13}$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$

b) $f(x) = \sqrt{x}$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$

b) $f(x) = \sqrt{x} = x^{1/2}$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$
b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a) $f(x) = x^{13}$ $\int f(x) dx = \frac{x^{14}}{14} + C$ b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$ c) $f(x) = \frac{1}{x^3}$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a) $f(x) = x^{13}$ $\int f(x) dx = \frac{x^{14}}{14} + C$ b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$ c) $f(x) = \frac{1}{x^3} = x^{-3}$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$
b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$
c) $f(x) = \frac{1}{x^3} = x^{-3}$ $\int f(x) dx = \frac{x^{-2}}{-2} + C$
Power Rule: The indefinite integral of a power function $f(x) = x^n$, where $n \neq -1$ is $\int x^n dx = \frac{1}{n+1}x^{n+1} + C.$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a) $f(x) = x^{13}$ $\int f(x) dx = \frac{x^{14}}{14} + C$ b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$ c) $f(x) = \frac{1}{x^3} = x^{-3}$ $\int f(x) dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C$ d) f(x) = 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Power Rule: The indefinite integral of a power function $f(x) = x^n$, where $n \neq -1$ is $\int x^n dx = \frac{1}{n+1}x^{n+1} + C.$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a) $f(x) = x^{13}$ $\int f(x) dx = \frac{x^{14}}{14} + C$ b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$ c) $f(x) = \frac{1}{x^3} = x^{-3}$ $\int f(x) dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C$ d) f(x) = 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Power Rule: The indefinite integral of a power function $f(x) = x^n$, where $n \neq -1$ is $\int x^n dx = \frac{1}{n+1}x^{n+1} + C.$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$
b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$
c) $f(x) = \frac{1}{x^3} = x^{-3}$ $\int f(x) dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C$

d) $f(x) = 1 = x^0$

Power Rule: The indefinite integral of a power function $f(x) = x^n$, where $n \neq -1$ is $\int x^n dx = \frac{1}{n+1}x^{n+1} + C.$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$
b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$
c) $f(x) = \frac{1}{x^3} = x^{-3}$ $\int f(x) dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C$
d) $f(x) = 1 = x^0$ $\int f(x) dx = x + C$

Table of Indefinite Integrals

f(x)	$\int f(x) \mathrm{d}x$	f(x)	$\int f(x) \mathrm{d}x$
1	$x + C$ $x^{n+1} + C = n \neq 1$	sec ² x	$\tan x + C$
$\frac{1}{1}$	$\frac{1}{n+1} + C, \ n \neq 1$ $\ln x + C$	sec x tan x	$\sec x + C$
e^{x}	$e^{x} + C$	a ^x 1	$\frac{1}{\ln a}a^{x} + C$
sin x	$-\cos x + C$	$\frac{1+x^2}{\sqrt{1-x^2}}$	$\arctan x + c$ arcsin x + C
cos x	$\sin x + C$	$\sqrt{1-x^2}$	

Table of Indefinite Integrals

<i>f</i> (<i>x</i>)	$\int f(x) \mathrm{d}x$	f(x)	$\int f(x) \mathrm{d}x$
1	x + C	sec ² x	tan x + C
$\frac{1}{2}$	$\frac{1}{n+1} + C, \ n \neq 1$ $\ln x + C$	sec x tan x	$\sec x + C$
x e ^x	$e^{x} + C$	a ^x 1	$\frac{1}{\ln a}a^{x}+C$
sin x	$-\cos x + C$	$\overline{\frac{1+x^2}{1+x^2}}$	arctan $x + C$
cos x	$\sin x + C$	$\overline{\sqrt{1-x^2}}$	$ \operatorname{arcsin} x + C $

Proof by derivation.

Example: Find an antiderivative of cos(3x).

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$.

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$.

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where *a* and *b* are constants.

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where a and b are constants.

$$\int f(ax + b)dx = \frac{1}{a}F(ax + b) + C$$

where $F(x)$ is an antiderivative of $f(x)$.

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where *a* and *b* are constants.

$$\int f(ax + b)dx = \frac{1}{a}F(ax + b) + C$$

where $F(x)$ is an antiderivative of $f(x)$.

Example:

a)
$$\int \sin(2x-\pi) \mathrm{d}x$$

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where *a* and *b* are constants.

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

F(x) is an antiderivative of $f(x)$.

Example:

where

a)
$$\int \sin(2x - \pi) dx = -\frac{1}{2} \cos(2x - \pi) + C$$

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where a and b are constants.

$$\int f(ax + b) dx = \frac{1}{a}F(ax + b) + C$$

F(x) is an antiderivative of $f(x)$.

Example:

where

a)
$$\int \sin(2x - \pi) dx = -\frac{1}{2} \cos(2x - \pi) + C$$

b)
$$\int e^{5-3x} dx$$

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x \, dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where *a* and *b* are constants.

$$\int f(ax + b)dx = \frac{1}{a}F(ax + b) + C$$

where $F(x)$ is an antiderivative of $f(x)$.

Example:

a)
$$\int \sin(2x - \pi) dx = -\frac{1}{2} \cos(2x - \pi) + C$$

b) $\int e^{5-3x} dx = -\frac{1}{3} e^{5-3x} + C$

1) Constant factor rule:

$$\int k \cdot f(x) \, \mathrm{d}x = k \cdot \int f(x) \, \mathrm{d}x$$

1) Constant factor rule:

$$\int k \cdot f(x) \, \mathrm{d}x = k \cdot \int f(x) \, \mathrm{d}x$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof: $(kF(x))' = k \cdot F'(x)$.

1) Constant factor rule:

$$\int k \cdot f(x) \, \mathrm{d}x = k \cdot \int f(x) \, \mathrm{d}x$$

Proof: $(kF(x))' = k \cdot F'(x)$.

2) Sum and difference rule:

$$\int (f(x) \pm g(x)) \, \mathrm{d}x = \int f(x) \, \mathrm{d}x \pm \int g(x) \, \mathrm{d}x$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1) Constant factor rule:

$$\int k \cdot f(x) \, \mathrm{d}x = k \cdot \int f(x) \, \mathrm{d}x$$

Proof: $(kF(x))' = k \cdot F'(x)$.

2) Sum and difference rule:

$$\int (f(x) \pm g(x)) \, \mathrm{d}x = \int f(x) \, \mathrm{d}x \pm \int g(x) \, \mathrm{d}x$$

Proof: $(F(x) \pm G(X))' = F'(x) \pm G'(x)$.

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:

$$=\int e^{3x} \,\mathrm{d}x + 7 \int x^{-1} \,\mathrm{d}x \text{ by rule 1) and 2)}$$

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:

$$= \int e^{3x} dx + 7 \int x^{-1} dx \text{ by rule 1) and 2)}$$
$$= \frac{1}{3}e^{3x} + 7 \ln|x| + C$$

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:
=
$$\int e^{3x} dx + 7 \int x^{-1} dx$$
 by rule 1) and 2)
= $\frac{1}{3}e^{3x} + 7 \ln |x| + C$

Example: Find
$$\int \left(\frac{1}{x-2} + (3x+7)^5\right) dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:
=
$$\int e^{3x} dx + 7 \int x^{-1} dx$$
 by rule 1) and 2)
= $\frac{1}{3}e^{3x} + 7 \ln |x| + C$

Example: Find
$$\int \left(\frac{1}{x-2} + (3x+7)^5\right) dx.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Solution:

$$= \ln |x - 2| + \frac{(3x + 7)^6}{6 \cdot 3} + C$$

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:
=
$$\int e^{3x} dx + 7 \int x^{-1} dx$$
 by rule 1) and 2)
= $\frac{1}{3}e^{3x} + 7 \ln |x| + C$

Example: Find
$$\int \left(\frac{1}{x-2} + (3x+7)^5\right) dx.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Solution:

$$= \ln |x - 2| + \frac{(3x + 7)^6}{6 \cdot 3} + C$$

Example: Find
$$\int \frac{\mathrm{d}x}{1+x^2}$$

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:
=
$$\int e^{3x} dx + 7 \int x^{-1} dx$$
 by rule 1) and 2)
= $\frac{1}{3}e^{3x} + 7 \ln |x| + C$

Example: Find
$$\int \left(\frac{1}{x-2} + (3x+7)^5\right) dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution:

$$= \ln |x-2| + \frac{(3x+7)^6}{6 \cdot 3} + C$$

Example: Find
$$\int \frac{\mathrm{d}x}{1+x^2}$$

Solution: = $\int \left(\frac{1}{1+x^2}\right) dx$

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.

Solution:
=
$$\int e^{3x} dx + 7 \int x^{-1} dx$$
 by rule 1) and 2)
= $\frac{1}{3}e^{3x} + 7 \ln |x| + C$

Example: Find
$$\int \left(\frac{1}{x-2} + (3x+7)^5\right) dx.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Solution:

$$= \ln |x-2| + \frac{(3x+7)^6}{6 \cdot 3} + C$$

Example: Find
$$\int \frac{\mathrm{d}x}{1+x^2}$$

Solution:

$$= \int \left(\frac{1}{1+x^2}\right) dx$$
$$= \arctan x + C$$

Example: Find a function f(x) such that

f'(x) = 6x(1-x) and f(0) = 1.

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus:

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x) \, \mathrm{d}x$

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x) \, dx$ $= \int (6x - 6x^2) \, dx$

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x) \, dx$ $= \int (6x - 6x^2) \, dx$ $= 6 \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + C$

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x) \, dx$ $= \int (6x - 6x^2) \, dx$ $= 6 \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + C$ $= 3x^2 - 2x^3 + C$

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x) \, \mathrm{d}x$ $= \int (6x - 6x^2) \, \mathrm{d}x$ $= 6 \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + C$ $= 3x^2 - 2x^3 + C$

When x = 0: f(0) = 1
Application to differential equations

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x) \, \mathrm{d}x$ $= \int (6x - 6x^2) \, \mathrm{d}x$ $= 6 \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + C$ $= 3x^2 - 2x^3 + C$

When x = 0: f(0) = 1 $\Leftrightarrow 3 \cdot 0 - 2 \cdot 0 + C = 1 \Leftrightarrow C = 1$.

Application to differential equations

Example: Find a function f(x) such that

$$f'(x) = 6x(1-x)$$
 and $f(0) = 1$.

Solution:

f(x) is an antiderivative of 6x(1-x). Thus: $f(x) = \int 6x(1-x)\,\mathrm{d}x$ $=\int (6x-6x^2)\,\mathrm{d}x$ $= 6 \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{2} + C$ $=3x^{2}-2x^{3}+C$ When x = 0: f(0) = 1 \Leftrightarrow 3 \cdot 0 - 2 \cdot 0 + C = 1 \Leftrightarrow C = 1. $f(x) = 3x^2 - 2x^3 + 1$

・ロト・日本・モート モー うへぐ

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Since v is an antiderivative of a(t) one has:

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Thus: $v = -gt + v_0$.

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Since v is an antiderivative of a(t) one has:

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Thus: $v = -gt + v_0$.

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Since v is an antiderivative of a(t) one has:

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Thus: $v = -gt + v_0$.

$$y = \int (-gt + v_0) \, \mathrm{d}t = -g\frac{t^2}{2} + v_0t + C$$

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Since v is an antiderivative of a(t) one has:

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Thus: $v = -gt + v_0$.

$$y = \int (-gt + v_0) dt = -g\frac{t^2}{2} + v_0t + C$$

$$y(0) = y_0 \Rightarrow 0 + 0 + C = y_0 \Rightarrow C = y_0$$

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Since v is an antiderivative of a(t) one has:

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Thus: $v = -gt + v_0$.

$$y = \int (-gt + v_0) dt = -g\frac{t^2}{2} + v_0t + C$$

$$y(0) = y_0 \Rightarrow 0 + 0 + C = y_0 \Rightarrow C = y_0$$

Thus: $y = g\frac{t^2}{2} + v_0t + y_0$.