Calculus I - Lecture 2 - Limits A

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus:

http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

January 27, 2014

Section 2.1 — Rates of Change

Motion along a straight line:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

s = position of object on the line = s(t): function of time t = time

Section 2.1 — Rates of Change

Motion along a straight line:

s = position of object on the line = s(t): function of time t = time

Average velocity over
$$[t_1,t_2] = rac{s(t_2)-s(t_1)}{t_2-t_1} = rac{\Delta s}{\Delta t}$$

 $\Delta s =$ change in position, $\Delta s =$ change in time

Instantaneous velocity

Fix a time t_0 . How fast is the object travelling at this instant?

Instantaneous velocity

Fix a time t_0 . How fast is the object travelling at this instant?

Let $v(t_0) =$ instantaneous velocity at t_0 , and $v_{ave} =$ average velocity over the time interval $[t_0, t]$.

$$v(t_0) = \lim_{t \to t_0} v_{ ext{ave}} = \lim_{t \to t_0} rac{s(t) - s(t_0)}{t - t_0}$$

 $\lim_{t \to t_0} v_{\text{ave}} = \text{the value that } v_{\text{ave}} \text{ approaches as } t \text{ gets closer and } closer to t_0.$

Example: A ball falls from a height of 100 ft. Approximate its speed 2 sec. after being relased.

	t	0	1	1.5	1.9	1.99	1.999	2
	5	100	84	64	42.24	36.638	36.06399	36
s = height (ft.) t = time (sec.) (observed data)								

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Example: A ball falls from a height of 100 ft. Approximate its speed 2 sec. after being relased.

	t	0	1	1.5	1.9	1.99	1.999	2
	5	100	84	64	42.24	36.638	36.06399	36
s = height (ft.) t = time (sec.) (observed data)								

Solution:

			Averarage velocity
time interval	Δt (sec.)	Δs (ft.)	$\Delta t/\Delta s$ (ft./sec.)
[1,2]	1	84 - 36 = 48	48/1 = 48
[1.5,2]	.5	64 - 36 = 28	28/.05 = 56
[1.9,2]	.1	42.24 - 36 = 6.24	6.24/.1 = 62.4
[1.99,2]	.01	36.638 - 36 = .638	.638/.01 = 63.8
[1.999,2]	.001	36.06399 - 36 = .06399	.06399/.001 = 63.99

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: A ball falls from a height of 100 ft. Approximate its speed 2 sec. after being relased.

	t	0	1	1.5	1.9	1.99	1.999	2
	5	100	84	64	42.24	36.638	36.06399	36
s = height (ft.) t = time (sec.) (observed data)								

Solution:

Averarage velocity time interval Δt (sec.) Δs (ft.) $\Delta t / \Delta s$ (ft./sec.) 84 - 36 = 4848/1 = 48[1,2] 1 [1.5,2] .5 64 - 36 = 2828/.05 = 56[1.9,2].1 42.24 - 36 = 6.246.24/.1 = 62.4[1.99,2] .01 36.638 - 36 = .638.638/.01 = 63.8[1.999,2] .001 36.06399 - 36 = .06399.06399/.001 = 63.99

$$\lim_{t \to 2} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = 64 \text{ ft./sec.}$$

is the speed as the data is showing.

$$V(t) = 1 - e^{-t}$$
 where

V = Volume in cubic meters,

t = time in seconds.

At what rate is the volume increasing when t = 5 sec.? Estimate numerically!

$$V(t) = 1 - e^{-t}$$
 where

V = Volume in cubic meters,

t = time in seconds.

At what rate is the volume increasing when t = 5 sec.? Estimate numerically!

Solution: First approximation $\Delta t = .1$ sec.

$$\frac{\Delta V}{\Delta t} = \frac{V(5.1) - V(5)}{.1} = \frac{.993903 - .993262}{.1} = .00641 \text{ m}^3/\text{sec.}$$

$$V(t) = 1 - e^{-t}$$
 where

V = Volume in cubic meters,

t = time in seconds.

At what rate is the volume increasing when t = 5 sec.? Estimate numerically!

Solution: First approximation $\Delta t = .1$ sec.

$$\frac{\Delta V}{\Delta t} = \frac{V(5.1) - V(5)}{.1} = \frac{.993903 - .993262}{.1} = .00641 \text{ m}^3/\text{sec.}$$

Improved approximation $\Delta t = .001$ sec.

$$\frac{\Delta V}{\Delta t} = \frac{V(5.001) - V(5)}{.1} = \frac{.99326879 - .99326205}{.001} = .00674 \text{ m}^3/\text{sec.}$$

$$V(t) = 1 - e^{-t}$$
 where

V = Volume in cubic meters,

t = time in seconds.

At what rate is the volume increasing when t = 5 sec.? Estimate numerically!

Solution: First approximation $\Delta t = .1$ sec.

$$\frac{\Delta V}{\Delta t} = \frac{V(5.1) - V(5)}{.1} = \frac{.993903 - .993262}{.1} = .00641 \text{ m}^3/\text{sec.}$$

Improved approximation $\Delta t = .001$ sec.

 $\frac{\Delta V}{\Delta t} = \frac{V(5.001) - V(5)}{.1} = \frac{.99326879 - .99326205}{.001} = .00674 \text{ m}^3/\text{sec.}$ (Exact value is $e^{-5} = .006737...$ as we'll see later.)

Graphical interpretation of average and instantaneous velocity

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへ⊙

Graphical interpretation of average and instantaneous velocity

= slope of "secant" line to graph,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graphical interpretation of average and instantaneous velocity

= slope of the tangent line to the curve at the point $(t_0, s(t_0))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\lim_{x \to a} f(x) = \text{"limit as } x \text{ approaches } a \text{ of } f(x)\text{"}$

:= the value that f(x) approaches as x gets closer and closer to a

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x)\text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

・ロト・日本・モート モー うへぐ

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

2) In order for the limit to exist you must get the **same value** approaching from the left or the right.

a) $\lim_{x\to 2} f(x) = 1;$ b) $\lim_{x\to 1} f(x) = D.N.E.$ (left and right limits are different);

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

2) In order for the limit to exist you must get the **same value** approaching from the left or the right.

a) $\lim_{x\to 2} f(x) = 1;$ b) $\lim_{x\to 1} f(x) = D.N.E.$ (left and right limits are different); c) $\lim_{x\to 4} f(x) =$

 $\lim_{x \to a} f(x) = \text{``limit as } x \text{ approaches } a \text{ of } f(x) \text{''}$

:= the value that f(x) approaches as x gets closer and closer to a

Notes: 1) x is allowed to approach a from the right or left, but x is not allowed to equal a.

2) In order for the limit to exist you must get the **same value** approaching from the left or the right.

a) lim f(x) = 1;
b) lim f(x) = D.N.E. (left and right limits are different);
c) lim f(x) = 1 (x never reaches 4).

How to make this definition rigorous?

Definition: Suppose that f(x) is defined on some open interval containing *a* (but possibly not at *a*). We say

 $\lim_{x\to a} f(x) = L$

if for any (tiny) positive number ε (epsilon) we have $|f(x) - L| < \varepsilon$ provided x is sufficiently close to a.

"Sufficiently close" means there exists, a (tiny) positive number δ (delta) such that if $|x - a| < \delta$ then $|f(x) - L| < \varepsilon$.

You will not be asked to do a ε - δ proof in this class.

 $\lim_{x \to a^+} f(x) = \text{``limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right''}$ $\lim_{x \to a^-} f(x) = \text{``limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left''}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\lim_{\substack{x \to a^+}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{\substack{x \to a^-}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日)、

a)
$$\lim_{x \to 1^-} f(x) =$$

 $\lim_{x \to a^+} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{x \to a^-} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日)、

э

a) $\lim_{x \to 1^{-}} f(x) = 1$ (x < 1);

 $\lim_{\substack{x \to a^+}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{\substack{x \to a^-}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日) (同) (日) (日)

a)
$$\lim_{x \to 1^{-}} f(x) = 1$$
 $(x < 1);$
b) $\lim_{x \to 1^{+}} f(x) =$

 $\lim_{\substack{x \to a^+}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{\substack{x \to a^-}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日) (同) (日) (日)

a)
$$\lim_{x \to 1^{-}} f(x) = 1$$
 (x < 1);
b) $\lim_{x \to 1^{+}} f(x) = 2$ (x > 1);

 $\lim_{\substack{x \to a^+}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{\substack{x \to a^-}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日) (同) (日) (日)

a)
$$\lim_{x \to 1^{-}} f(x) = 1$$
 (x < 1);
b) $\lim_{x \to 1^{+}} f(x) = 2$ (x > 1);
c) $\lim_{x \to 2^{-}} f(x) =$

 $\lim_{\substack{x \to a^+}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{\substack{x \to a^-}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日)、

a)
$$\lim_{x \to 1^{-}} f(x) = 1$$
 (x < 1);
b) $\lim_{x \to 1^{+}} f(x) = 2$ (x > 1);
c) $\lim_{x \to 2^{-}} f(x) = 1$ (x < 2);

 $\lim_{\substack{x \to a^+}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right"}$ $\lim_{\substack{x \to a^-}} f(x) = \text{"limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left"}$

(日)、

a)
$$\lim_{x \to 1^{-}} f(x) = 1$$
 $(x < 1);$
b) $\lim_{x \to 1^{+}} f(x) = 2$ $(x > 1);$
c) $\lim_{x \to 2^{-}} f(x) = 1$ $(x < 2);$
d) $\lim_{x \to 4^{-}} f(x) =$

 $\lim_{x \to a^+} f(x) = \text{``limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the right''}$ $\lim_{x \to a^-} f(x) = \text{``limit of } f(x) \text{ as } x \text{ approaches } a \text{ from the left''}$

a)
$$\lim_{x \to 1^{-}} f(x) = 1$$
 (x < 1);
b) $\lim_{x \to 1^{+}} f(x) = 2$ (x > 1);
c) $\lim_{x \to 2^{-}} f(x) = 1$ (x < 2);
d) $\lim_{x \to 4^{-}} f(x) = 1$ (x < 4, x never reaches 4).

Example: Evaluate $\lim_{x\to 0^+} (1+x)^{1/x}$.

Example: Evaluate $\lim_{x \to 0^+} (1+x)^{1/x}$.

Example: Evaluate $\lim_{x\to 0^+} (1+x)^{1/x}$.

(Since $x \to 0^+$ we evaluate f(x) at small positive values of x approaching 0.)

x	<i>y</i> 1
.1	2.59374
.01	2.70481
.001	2.71692
.0001	2.71814
.00001	2.71827

Example: Evaluate $\lim_{x\to 0^+} (1+x)^{1/x}$.

(Since $x \to 0^+$ we evaluate f(x) at small positive values of x approaching 0.)

X	<i>y</i> ₁
.1	2.59374
.01	2.70481
.001	2.71692
.0001	2.71814
.00001	2.71827
$\lim_{x\to 0^+} (1 -$	$(+x)^{1/x} = e = 2.7182818$

Solution:

x	$\sin\left(\frac{1}{x}\right)$
.1	54402
.01	50636
.001	.82688
.0001	30561
.00001	.035748

(ロ)、(型)、(E)、(E)、 E) の(の)

Solution:

	x	$\sin\left(\frac{1}{x}\right)$
	.1	54402
	.01	50636
	.001	.82688
	.0001	30561
	.00001	.035748
1		

No obvious limit. Let us investigate the graph of sin $(\frac{1}{x})$.

Solution:

No obvious limit. Let us investigate the graph of $\sin\left(\frac{1}{x}\right)$. We note that $\sin\left(\frac{1}{x}\right) = 0$ for $\frac{1}{x} = \pi$, 2π , 3π , 4π , ... $\Leftrightarrow x = \frac{1}{\pi}, \frac{1}{2\pi}, \frac{1}{3\pi}, \frac{1}{4\pi}, \dots$ Thus the graph oscillates for $x \to 0^+$ infinitely many times:

 $\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right) D.N.E.$

$$\lim_{x \to 2^{-}} \frac{2x+3}{x^2-4} \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{2x+3}{x^2-4}$$

<□ > < @ > < E > < E > E のQ @

$$\lim_{x \to 2^{-}} \frac{2x+3}{x^2-4} \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{2x+3}{x^2-4}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Solution: Let $y = (2x + 3)/(x^2 - 4)$. Make tables:

X	y	X	y y
1.9	-17.44	2.1	17.56
1.99	-174.9	2.01	175.1
1.999	-1750	2.001	1750

$$\lim_{x \to 2^{-}} \frac{2x+3}{x^2-4} \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{2x+3}{x^2-4}$$

Solution: Let $y = (2x + 3)/(x^2 - 4)$. Make tables:

$$\lim_{x \to 2^{-}} \frac{2x+3}{x^2-4} = -\infty$$
 (D.N.E.)

 $\lim_{x \to 2^+} \frac{2x+3}{x^2-4} = +\infty \text{ (D.N.E.)}$

$$\lim_{x \to 2^{-}} \frac{2x+3}{x^2-4} \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{2x+3}{x^2-4}$$

Solution: Let $y = (2x + 3)/(x^2 - 4)$. Make tables:

	x	у		X	у		
	1.9	-17.44		2.1	17.56		
1	1.99	-174.9		2.01	175.1		
1.	.999	-1750	2	2.001	1750		
$\lim_{x \to 2^-} \frac{2x+x}{x^2-x}$	$\frac{3}{4} =$	$-\infty$ (D.N.E.)) 	$\lim_{x \to 2^+} \frac{2x}{x^2}$	$\frac{x+3}{2-4} =$	$+\infty$ (D	.N.E.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here, the graph has a vertical asymptote:

