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Goal: Use first and second derivatives to make a rough sketch of
the graph of a function f(x).

Recall:

Critical points: Points ¢ in the domain of f(x) where '(c) does
not exist or f'(c) = 0.

Monotony:

f'(x) > 0 = f(x) increasing.

f'(x) < 0 = f(x) decreasing.
Local extrema: Appear at points c in the domain of f(x) where
f(x) changes from increasing to decreasing (f(c) maximum) or
from decreasing to increasing (f(c) minimum).
First derivative test:
Let f'(c) = 0. Then:

f'(x) > 0 for x < ¢ and f/(x) < 0 for x > ¢ = f(c) is local max.
f'(x) < 0 for x < ¢ and f'(x) > 0 for x > ¢ = f(c) is local min.
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Concavity:
f""(x) > 0 = f(x) concave up.
f"(x) < 0 = f(x) concave down.

Inflection points: Points (x, f(x)) where the graph of f(x)
changes its concavity.

Inflection point test:

Let f(c) = 0.

If ”(x) changes its sign at x = ¢ then f(x) has a inflection point
at x = c.

Second derivative test:

Let f'(c) = 0. Then:

f"(c) <0 = f(c) is a local maximum
f"(c) > 0 = f(c) is a local minimum
Transition points: Points where f’(x) or f”/(x) has a sign change.

Those are the points where the graph of f(x) may changes its
features. We will concentrate to find those points
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Example: Sketch the graph of f(x) =2x5 —5x? 4 1.
Solution:

1. All real numbers (polynomial).

2. f!(x) =5-2x* —2-5x = 10x(x3 — 1)
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Example: Sketch the graph of f(x) = x(x — 2)%/3.

Solution:
1. All real numbers (¥/x is defined everywhere).

2. FI(x) = (x — 232 + x- 3(x —2)71/3
3(x —2) 2x 5x — 6

C 3(x—2)1/3 * 3(x —2)1/3  3(x —2)1/3
f(x)=05x=6<x=6/5
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Example: Sketch the graph of f(x) = X2X_ 5

Solution:
1. Denominator x> — 9 # 0 which is x # £3 .

x2 —0) — x-2x
2. f,(X):( (Xz)_g)2
—x2-9 x24+9

(2=92  (x*-9)?
f'(x) =0 < x*+9 = 0. Thus no critical points in domain.
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