Calculus I - Lecture 18 - Curve Sketching

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus:

http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

March 31, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall:

Recall:

Critical points: Points *c* in the domain of f(x) where f'(c) does not exist or f'(c) = 0.

Recall:

Critical points: Points *c* in the domain of f(x) where f'(c) does not exist or f'(c) = 0.

Monotony:

 $f'(x) > 0 \Rightarrow f(x)$ increasing. $f'(x) < 0 \Rightarrow f(x)$ decreasing.

Recall:

Critical points: Points *c* in the domain of f(x) where f'(c) does not exist or f'(c) = 0.

Monotony:

 $f'(x) > 0 \Rightarrow f(x)$ increasing. $f'(x) < 0 \Rightarrow f(x)$ decreasing.

Local extrema: Appear at points c in the domain of f(x) where f(x) changes from increasing to decreasing (f(c) maximum) or from decreasing to increasing (f(c) minimum).

Recall:

Critical points: Points *c* in the domain of f(x) where f'(c) does not exist or f'(c) = 0.

Monotony:

 $f'(x) > 0 \Rightarrow f(x)$ increasing. $f'(x) < 0 \Rightarrow f(x)$ decreasing.

Local extrema: Appear at points c in the domain of f(x) where f(x) changes from increasing to decreasing (f(c) maximum) or from decreasing to increasing (f(c) minimum).

First derivative test:

Let
$$f'(c) = 0$$
. Then:
 $f'(x) > 0$ for $x < c$ and $f'(x) < 0$ for $x > c \Rightarrow f(c)$ is local max.
 $f'(x) < 0$ for $x < c$ and $f'(x) > 0$ for $x > c \Rightarrow f(c)$ is local min.

 $f''(x) > 0 \Rightarrow f(x)$ concave up. $f''(x) < 0 \Rightarrow f(x)$ concave down.

 $f''(x) > 0 \Rightarrow f(x)$ concave up. $f''(x) < 0 \Rightarrow f(x)$ concave down.

Inflection points: Points (x, f(x)) where the graph of f(x) changes its concavity.

 $f''(x) > 0 \Rightarrow f(x)$ concave up. $f''(x) < 0 \Rightarrow f(x)$ concave down.

Inflection points: Points (x, f(x)) where the graph of f(x) changes its concavity.

Inflection point test:

Let f''(c) = 0. If f''(x) changes its sign at x = c then f(x) has a inflection point at x = c.

 $f''(x) > 0 \Rightarrow f(x)$ concave up. $f''(x) < 0 \Rightarrow f(x)$ concave down.

Inflection points: Points (x, f(x)) where the graph of f(x) changes its concavity.

Inflection point test:

Let f''(c) = 0. If f''(x) changes its sign at x = c then f(x) has a inflection point at x = c.

Second derivative test:

Let f'(c) = 0. Then: $f''(c) < 0 \Rightarrow f(c)$ is a local maximum $f''(c) > 0 \Rightarrow f(c)$ is a local minimum

 $f''(x) > 0 \Rightarrow f(x)$ concave up. $f''(x) < 0 \Rightarrow f(x)$ concave down.

Inflection points: Points (x, f(x)) where the graph of f(x) changes its concavity.

Inflection point test:

Let f''(c) = 0. If f''(x) changes its sign at x = c then f(x) has a inflection point at x = c.

Second derivative test:

Let f'(c) = 0. Then: $f''(c) < 0 \Rightarrow f(c)$ is a local maximum $f''(c) > 0 \Rightarrow f(c)$ is a local minimum

Transition points: Points where f'(x) or f''(x) has a sign change.

 $f''(x) > 0 \Rightarrow f(x)$ concave up. $f''(x) < 0 \Rightarrow f(x)$ concave down.

Inflection points: Points (x, f(x)) where the graph of f(x) changes its concavity.

Inflection point test:

Let f''(c) = 0. If f''(x) changes its sign at x = c then f(x) has a inflection point at x = c.

Second derivative test:

Let f'(c) = 0. Then: $f''(c) < 0 \Rightarrow f(c)$ is a local maximum $f''(c) > 0 \Rightarrow f(c)$ is a local minimum

Transition points: Points where f'(x) or f''(x) has a sign change.

Those are the points where the graph of f(x) may changes its features. We will concentrate to find those points

Main Steps

Main Steps

1. Determine then domain.

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.

(ロ)、(型)、(E)、(E)、 E) の(の)

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.
- 3. Find points with f''(x) = 0 and mark sign of f''(x) on number line.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.
- 3. Find points with f''(x) = 0 and mark sign of f''(x) on number line.

4. Compute function values for transition points.

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.
- 3. Find points with f''(x) = 0 and mark sign of f''(x) on number line.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4. Compute function values for transition points.
- 5. Find asymptotes.

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.
- 3. Find points with f''(x) = 0 and mark sign of f''(x) on number line.

- 4. Compute function values for transition points.
- 5. Find asymptotes.
- 6. Sketch graph.

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.
- 3. Find points with f''(x) = 0 and mark sign of f''(x) on number line.

- 4. Compute function values for transition points.
- 5. Find asymptotes.
- 6. Sketch graph.
- 7. Take a break.

Main Steps

- 1. Determine then domain.
- 2. Find points with f'(x) = 0 and mark sign of f'(x) on number line.
- 3. Find points with f''(x) = 0 and mark sign of f''(x) on number line.

- 4. Compute function values for transition points.
- 5. Find asymptotes.
- 6. Sketch graph.
- 7. Take a break.

<□ > < @ > < E > < E > E のQ @

Solution:

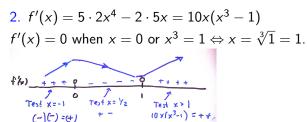
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution:

2.
$$f'(x) = 5 \cdot 2x^4 - 2 \cdot 5x = 10x(x^3 - 1)$$

 $f'(x) = 0$ when $x = 0$ or $x^3 = 1 \Leftrightarrow x = \sqrt[3]{1} = 1$.

Solution:



Solution:

1. All real numbers (polynomial).

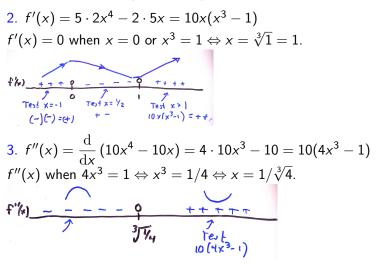
2.
$$f'(x) = 5 \cdot 2x^4 - 2 \cdot 5x = 10x(x^3 - 1)$$

 $f'(x) = 0$ when $x = 0$ or $x^3 = 1 \Leftrightarrow x = \sqrt[3]{1} = 1$.

 $f'(x) = \frac{1}{2} + \frac{1}{2} +$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution:



4.	
X	$f(x) = 2x^5 - 5x^2 + 1$
0	1
1	2 - 5 + 1 = -2
$1/\sqrt[3]{4}$	2-5+1=-2 78

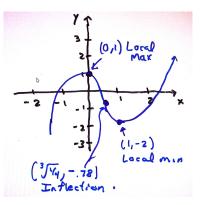
◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

4.	
X	$f(x) = 2x^5 - 5x^2 + 1$
0	1
1	2 - 5 + 1 = -2
$1/\sqrt[3]{4}$	2-5+1=-2 78

5. No asymptotes (polynomial of positive degree)

5. No asymptotes (polynomial of positive degree)

6.



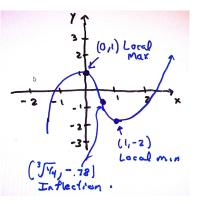
・ロト ・四ト ・ヨト ・ヨト

э

$$\begin{array}{c|cccc}
4. & f(x) = 2x^5 - 5x^2 + 1 \\
\hline
0 & 1 \\
1 & 2 - 5 + 1 = -2 \\
1/\sqrt[3]{4} & -.78
\end{array}$$

5. No asymptotes (polynomial of positive degree)

6.



7. Questions?

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$.

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$. Solution:

<□ > < @ > < E > < E > E のQ @

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$. Solution:

1. All real numbers ($\sqrt[3]{x}$ is defined everywhere).

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$. Solution:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. All real numbers ($\sqrt[3]{x}$ is defined everywhere).

2. $f'(x) = (x-2)^{3/2} + x \cdot \frac{2}{3}(x-2)^{-1/3}$

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$. Solution:

1. All real numbers ($\sqrt[3]{x}$ is defined everywhere).

2.
$$f'(x) = (x-2)^{3/2} + x \cdot \frac{2}{3}(x-2)^{-1/3}$$

 $= \frac{3(x-2)}{3(x-2)^{1/3}} + \frac{2x}{3(x-2)^{1/3}} = \frac{5x-6}{3(x-2)^{1/3}}$
 $f'(x) = 0 \Leftrightarrow 5x = 6 \Leftrightarrow x = 6/5$
 $f'(x)$ D.N.E. at $x = 2$.

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$. Solution:

1. All real numbers ($\sqrt[3]{x}$ is defined everywhere).

2.
$$f'(x) = (x-2)^{3/2} + x \cdot \frac{2}{3}(x-2)^{-1/3}$$

 $= \frac{3(x-2)}{3(x-2)^{1/3}} + \frac{2x}{3(x-2)^{1/3}} = \frac{5x-6}{3(x-2)^{1/3}}$
 $f'(x) = 0 \Leftrightarrow 5x = 6 \Leftrightarrow x = 6/5$
 $f'(x)$ D.N.E. at $x = 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: Sketch the graph of $f(x) = x(x-2)^{2/3}$. Solution:

1. All real numbers ($\sqrt[3]{x}$ is defined everywhere).

2.
$$f'(x) = (x-2)^{3/2} + x \cdot \frac{2}{3}(x-2)^{-1/3}$$
$$= \frac{3(x-2)}{3(x-2)^{1/3}} + \frac{2x}{3(x-2)^{1/3}} = \frac{5x-6}{3(x-2)^{1/3}}$$
$$f'(x) = 0 \Leftrightarrow 5x = 6 \Leftrightarrow x = 6/5$$
$$f'(x) \text{ D.N.E. at } x = 2.$$
$$(x) = \frac{1}{2} + \frac{1}{2} + \frac{9}{3(x-2)^{1/3}} + \frac{9}{2} + \frac{9}{2} + \frac{9}{3(x-2)^{1/3}} + \frac{9}{3(x-2)^{1/3}} + \frac{15(x-2)-(5x-6)}{9(x-2)^{4/3}} = \frac{10x-24}{9(x-2)^{4/3}}$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''_{x} \underbrace{ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへの

$$\begin{array}{c|cccc}
4. & f(x) = x(x-2)^{2/3} \\
\hline
6/5 & 1.034 \\
2 & 0 \\
2.4 & 1.3 \\
0 & 0
\end{array}$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{array}{c|cccc}
4. & f(x) = x(x-2)^{2/3} \\
\hline
6/5 & 1.034 \\
2 & 0 \\
2.4 & 1.3 \\
0 & 0
\end{array}$$

5. No asymptotes

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

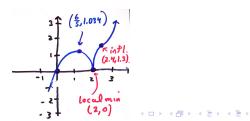
$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

$$f''(x) = 0 \Leftrightarrow 10x = 24 \Leftrightarrow x = 24/10 = 12/5$$

4.
x
$$f(x) = x(x-2)^{2/3}$$

6/5 1.034
2 0
2.4 1.3
0 0
5. No asymptotes

6.



æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(ロ)、(型)、(E)、(E)、 E) の(の)

Solution:

1. Denominator $x^2 - 9 \neq 0$ which is $x \neq \pm 3$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Solution:

1. Denominator $x^2 - 9 \neq 0$ which is $x \neq \pm 3$.

2.
$$f'(x) = \frac{(x^2 - 9) - x \cdot 2x}{(x^2 - 9)^2}$$
$$\frac{-x^2 - 9}{(x^2 - 9)^2} = -\frac{x^2 + 9}{(x^2 - 9)^2}$$
$$f'(x) = 0 \Leftrightarrow x^2 + 9 = 0.$$
 Thus no critical points in domain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Solution:

1. Denominator $x^2 - 9 \neq 0$ which is $x \neq \pm 3$.

2.
$$f'(x) = \frac{(x^2 - 9) - x \cdot 2x}{(x^2 - 9)^2}$$

 $\frac{-x^2 - 9}{(x^2 - 9)^2} = -\frac{x^2 + 9}{(x^2 - 9)^2}$
 $f'(x) = 0 \Leftrightarrow x^2 + 9 = 0$. Thus no critical points in domain.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution:

1. Denominator $x^2 - 9 \neq 0$ which is $x \neq \pm 3$.

2.
$$f'(x) = \frac{(x^2 - 9) - x \cdot 2x}{(x^2 - 9)^2}$$
$$\frac{-x^2 - 9}{(x^2 - 9)^2} = -\frac{x^2 + 9}{(x^2 - 9)^2}$$
$$f'(x) = 0 \Leftrightarrow x^2 + 9 = 0.$$
 Thus no critical points in domain.
P'(x) = $\frac{d}{dx} \left(-\frac{x^2 + 9}{(x^2 - 9)^2} \right)$
$$= \frac{-2x(x^2 - 9)^2 + (x^2 + 9)2(x^2 - 9)2x}{(x^2 - 9)^4}$$
$$= \frac{-2x(x^2 - 9) + (x^2 + 9)2 \cdot 2x}{(x^2 - 9)^3} = \frac{2x(x^2 + 27)}{(x^2 - 9)^3}$$

$$f''(x) = 0 \Leftrightarrow x = 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$f''(x) = 0 \Leftrightarrow x = 0.$$

$$\frac{4}{x} \frac{f(x) = x/(x^2 - 9)}{0 \ 0}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$f''(x) = 0 \Leftrightarrow x = 0.$$

$$\frac{4}{x} \frac{f(x) = x/(x^2 - 9)}{0 \ 0}$$

5. There are vertical asymptotes at x = 3 an x = -3 since $\lim_{x \to \pm 3} x/(x^2 - 9) = \pm \infty$, i.e. f(x) has an "infinite limit".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\lim_{x \to \pm \infty} \frac{x}{x^2 - 9} = \lim_{x \to \pm \infty} \frac{x}{x^2} = \lim_{x \to \pm \infty} \frac{1}{x} = 0.$$

Horizontal asymptote $y = 0$.

$$f''(x) = 0 \Leftrightarrow x = 0.$$

$$4.$$

$$x \mid f(x) = x/(x^2 - 9)$$

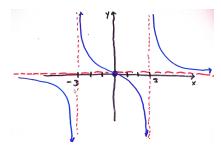
$$0 \mid 0$$

5. There are vertical asymptotes at x = 3 an x = -3 since $\lim_{x \to \pm 3} x/(x^2 - 9) = \pm \infty$, i.e. f(x) has an "infinite limit".

$$\lim_{x \to \pm \infty} \frac{x}{x^2 - 9} = \lim_{x \to \pm \infty} \frac{x}{x^2} = \lim_{x \to \pm \infty} \frac{1}{x} = 0.$$

Horizontal asymptote $y = 0.$

6.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

$$f''(x) = 0 \Leftrightarrow x = 0.$$

$$4.$$

$$x \mid f(x) = x/(x^2 - 9)$$

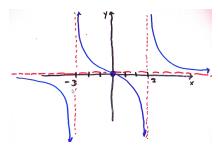
$$0 \mid 0$$

5. There are vertical asymptotes at x = 3 an x = -3 since $\lim_{x \to \pm 3} x/(x^2 - 9) = \pm \infty$, i.e. f(x) has an "infinite limit".

$$\lim_{x \to \pm \infty} \frac{x}{x^2 - 9} = \lim_{x \to \pm \infty} \frac{x}{x^2} = \lim_{x \to \pm \infty} \frac{1}{x} = 0.$$

Horizontal asymptote $y = 0.$

6.



7. Questions?