
Calculus I - Lecture 16
Minima and Maxima & Mean Value Theorem

Lecture Notes:
http://www.math.ksu.edu/˜gerald/math220d/

Course Syllabus:
http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

March 24, 2014



Extremal Values of Function

One of the most important applications of calculus is optimization
of functions

Extrema can be divided in the following subclasses:

I Maxima and Minima

I Absolute (or global) and local (or relative) Extrema

Extrema, Maxima and Minima are the plural form of Extremum,
Maximum and Minimum, respectively.
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Definition (Absolute Extrema)

Let f (x) be a function defined on on interval I and let a ∈ I .

1. We say that f (x) has an absolute maximum at x = a if f (a)
is the maximal value of f (x) on I . That is

f (a) ≥ f (x) for all x ∈ I .

2. We say that f (x) has an absolute minimum at x = a if f (a)
is the minimal value of f (x) on I . That is

f (a) ≤ f (x) for all x ∈ I .

Definition (Local Extrema)

Let f (x) be a function.

1. We say that f (x) has an local maximum at x = a if f (a) is
the maximal value of f (x) on some open interval I inside the
domain of f containing a.

2. We say that f (x) has an local minimum at x = a if f (a) is
the minimal value of f (x) on some open interval I inside the
domain of f containing a.



Definition (Absolute Extrema)

Let f (x) be a function defined on on interval I and let a ∈ I .

1. We say that f (x) has an absolute maximum at x = a if f (a)
is the maximal value of f (x) on I . That is

f (a) ≥ f (x) for all x ∈ I .

2. We say that f (x) has an absolute minimum at x = a if f (a)
is the minimal value of f (x) on I . That is

f (a) ≤ f (x) for all x ∈ I .

Definition (Local Extrema)

Let f (x) be a function.

1. We say that f (x) has an local maximum at x = a if f (a) is
the maximal value of f (x) on some open interval I inside the
domain of f containing a.

2. We say that f (x) has an local minimum at x = a if f (a) is
the minimal value of f (x) on some open interval I inside the
domain of f containing a.



In the above situation the value f (a) is called a global (or local)
maximum (or minimum).

Example:



In this section out interest is in finding the (absolute) maximal and
minimal values of a function on a closed interval [a, b].

Where can this occur?
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Definition
A point c in the domain of a function f (x) is called a critical point
if either

1. f ′(c) = 0 (horizontal tangent)

2. or f ′(c) does not exist.
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Theorem
If f (c) is a local maximum or minimum, then c is a critical point
of f (x).

Note: The converse does not hold, i.e., if f ′(c) = 0 then f (c) is
not necessarily a maximum or minimum.

Example: Find the local minima and maxima of f (x) = x3.

Solution:

By the theorem, we have to find the critical points.

Since f ′(x) = 3x2, which is defined everywhere, the critical points
occur where f ′(x) = 0. From f ′(x) = 3x2 = 0 we find x = 0 as the
only critical point.

Since for all x < 0 one has f (x) < 0 and for x > 0 one has
f (x) > 0 we see that f (0) = 0 is not a local extremum.

The function f (x) = x3 has no local minima or maxima.
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Theorem
Suppose that f (x) is continuous on the closed interval [a, b]. Then
f (x) attains its absolute maximum and minimum values on [a, b]
at either:

I A critical point

I or one of the end points a or b.

Note: If f (x) is not continuous on [a, b] then this theorem fails.

Example: What is the maximum value of f (x) on the interval
[a, b]?

Solution: There is none.
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Example:
a) Find the critical points for the function f (x) = 3x − x3.
b) Find the maximal and minimal values of f (x) = 3x − x3 on the
interval [−1, 3].

Solution:

a) f ′(x) = 3− 3x2 = 3(1− x2)

f ′(x) = 0 when x2 = 1 or x = ±1.

f ′(x) exists for all real numbers.

The only critical points are ±1.

b) We make a table with the critical points inside the interval and
its endpoints.

x 3x − x3

1 3− 1 = 2
−1 −3− (−1) = −2
3 3 · 3− 33 = −18

Maximal value is 2 at x = 1,
Minimal value is −18 at x = 3.
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Example: Find the minimal and maximal value of
f (x) = x(2− x)1/3 on the interval [1, 3].

Solution: Step 1: Find the critical points.

f ′(x) = 1 · (2− x)1/3 + x · 1
3(2− x)−2/3(−1)

=
2− x

(2− x)2/3
− x

3(2− x)2/3

=
3(2− x)− x

3(2− x)2/3
=

6− 4x

3(2− x)2/3

f ′(x) = 0⇒ 6− 4x = 0⇒ 4x = 6⇒ x = 3
2

f ′(x) does not exist ⇒ 2− x = 0⇒ x = 2

Step 2: Make table with critical points & endpoints

x x(2− x)1/3

3/2 3
2(1

2)1/3 ≈ 1.19

2 2 · 01/3 = 0

1 1 · 11/3 = 1

3 3(−1)1/3 = −3

Maximal value is 3
2 3√2

, minimal value is −3.
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Mean Value Theorem

We start with an important special case of the Mean Value
Theorem (MVT)

Theorem (Rolle’s Theorem)

Suppose f (x) is a continuous function on [a, b], is differentiable on
(a, b), and f (a) = f (b).
Then there exists a c in (a, b) with f ′(c) = 0.

Note: There can be more than one such value of c .

Proof: Follows from the results of the last section!
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Example: Let f (x) = x2 − 3x . Show that all hypothesis for Rolle’s
Theorem are satisfied for the interval [1, 2] and find all c as in the
theorem.

Solution:
Since f (x) is a polynomial it is continuous on [1, 2] and the
derivative f ′(x) exists on (1, 2).

f (1) = 12 − 3 · 1 = −2, f (2) = 22 − 3 · 2 = −2

Thus f (1) = f (2).

Find c :

f ′(x) = 2x − 3 = 0⇒ 2x = 3⇒ x = 3
2 .

c = 3
2 satisfies the conclusion of Rolle’s Theorem.
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Theorem (Mean Value Theorem)

Suppose f (x) is a continuous function on [a, b] and is differentiable
on (a, b).

Then there exists a c in (a, b) with f ′(c) =
f (b)− f (a)

b − a
.

Note: Again, there can be more than one such value of c .

Intuitive version: There is always a time when your instantaneous
velocity equals your average velocity.
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Example: Let f (x) = x3. Find all c in [−1, 3] satisfying the
conclusion of the MVT.

Solution:

First note that f (x) is continuous on [−1, 3] and differentiable on
(−1, 3).

f (b)− f (a)

b − a
=

f (3)− f (−1)

3− (−1)
=

27− (−1)

4
=

28

4
= 7.

f ′(x) = 3x2

MVT: 7 = 3c2 ⇒ c2 = 7
3 ⇒ c = ±

√
7
3

Only c =
√

7
3 is in (−1, 3).

c =
√

7
3 satisfies the conclusion of the MVT.
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