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Theorem (Intermediate Value Theorem (IVT))

Let f (x) be continuous on the interval [a, b] with f (a) = A and
f (b) = B.

Given any value C between A and B, there is at least one point
c ∈ [a, b] with f (c) = C.

Important special case of the IVT:
Suppose that f (x) is continuous on the interval [a, b] with
f (a) < 0 and f (b) > 0.
Then there is a point c ∈ [a, b] where f (c) = 0.
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Geometric View of the Derivative
Recall, the slope of a line is

m =
rise
run

=
∆y

∆x
=

y2 − y1

x2 − x1
=

change in y

change in x

Definition (Tangent Line)

A tangent line is a line that (in general)

1. touches the graph at one point (near that point) and

2. has a slope equal to the slope of the curve.

If the curve is a line segment, the tangent line coincides with the
segment.

Slope of a curve at x = a equals mtan = slope of tangent line.



Definition (Derivative — geometric)

The derivative of a function f (x) at x = a, denoted f ′(a)
(pronounced ”f prime of a”), is the slope of the curve y = f (x) at
x = a.

f ′(a) = the derivative of f(x) at a

= mtan, the slope of the tangent line.



Algebraic View of the Derivative

Let us determine the slope of the curve at x = a.

Let h = tiny positive number (e.g. 0.0001)
msec = slope of the secant line shown above

=
∆y

∆x
=

f (a + h)− f (a)

h

mtan = lim
h→0

msec

Definition (Derivative — algebraic)

f ′(a) = lim
h→0

f (a + h)− f (a)

h
= lim

x→a

f (x)− f (a)

x − a



Important Derivatives

f (x) f ′(x)

c 0 (c any real constant)
x 1
xn n xn−1 (n any real constant)
ex ex

bx (ln b) bx (b any positive constant)

ln x
1

x

logb x
1

ln b

1

x
(b any positive constant)

sin x cos x
cos x − sin x
tan x sec2 x
sec x sec x tan x

arcsin x
1√

1− x2

arctan x
1

1 + x2



Important Rules

Sum and Difference Rule
d
dx

(
f (x)± g(x)

)
=

d
dx

f (x)± d
dx

g(x)

Constant Factor Rule
d
dx

(
c · f (x)

)
= c

d
dx

f (x) (c a constant)

Product Rule
d
dx

(
f (x) · g(x)

)
=

d
dx

f (x) · g(x) + f (x) · d
dx

g(x)

Quotient Rule

d
dx

(
f (x)

g(x)

)
=

d
dx

f (x) · g(x)− f (x) · d
dx

g(x)

g(x)2

Chain Rule
d
dx

f (g(x)) = f ′(g(x)) · g ′(x)

Inverse Function Rule
d
dx

f −1(x) =
1

f ′(f −1(x))
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Example: Find the derivatives.

a)
d
dx

2x2
= (ln 2)2x2 · 2x =2(ln 2)x 2x2

b)
d
dx

ex arcsin(x2) = ex arcsin(x2) + ex · 1√
1− (x2)2

· 2x

=

(
arcsin(x2) +

2x√
1− x4

)
ex

c) tan3(1− x2)= 3 tan2(1− x2) · sec2(1− x2)(−2x)

=−6x
(
tan(1− x2) sec(1− x2)

)2
d)

arctan x

1 + ln x
=

1
1+x2 (1 + ln x)− arctan(x) 1

x

(1 + ln x)2

=
1

(1 + x2)(1 + ln x)
− arctan x

x(1 + ln x)2
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Example: Use logarithmic differentiation to find dy
dx for

y = xx(x2 + 1)5/2.

Solution:

ln y = ln(xx) + ln((x2 + 1)5/2)

ln y = x ln x +
5

2
ln(x2 + 1)

d
dx

ln y =
d
dx

(x ln x) +
d
dx

(
5

2
ln(x2 + 1))

1

y
· dy

dx
= (1 · ln x + x · 1

x
) +

5

2

1

x2 + 1
· 2x)

dy

dx
= xx(x2 + 1)5/2

[
1 + ln x +

5x

x2 + 1

]
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Example: Find the tangent line to the curve x2y3 = y2 + 3 at
(2, 1).

Solution:
d
dx

(x2y3) =
d
dx

(y2 + 3)

2xy3 + x2 · 3y2 · y ′ = 2y · y ′

(3x2y2 − 2y) · y ′ = −2xy3

y ′ =
−2xy3

3x2y2 − 2y
= − 2xy2

3x2y − 2

y ′
∣∣∣∣
(2,1)

= − 2 · 2 · 12

3 · 22 · 1− 2
= − 4

10
= −2

5

Tangent line:

y = m(x − x0) + y0

y = −2

5
(x − 2) + 1 = − 2

5
x +

9

5
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Example: Recall that in baseball the home plate and the three
bases form a square of side length 90 ft. A batter hits the ball and
runs to the first base at 24 ft/sec. At what rate is his distance
from the 2nd base decreasing when he is halfway to the first base.

Solution:

Let x distance between player and first base.

Let y distance between player and 2nd base.

Given dx
dt = −24 ft/sec. Find dy

dt when x = 90
2 = 45 ft.

y2 = x2 + 902

d
dt

(y2) =
d
dt

(x2 + 902)

2y · dy

dt
= 2x · dx

dt
dy

dt
=

x

y
· dx

dt

x = 45, y =
√

x2 + 902 =
√

452 + 902 = 45
√

5

Thus
dy

dt
=

45

45
√

5
· (−24) = − 24√

5
ft/sec.
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Example: Grain flows into a conical pile such that the height
increases 2 ft/min while the radius increases 3 ft/min. At what
rate is the volume increasing when the pile is 2 feet high and has a
radius of 4 feet.

Solution:

Volume of the cone: V = 1
3πr2h

dh
dt = 2 ft/min when h = 2
dr
dt = 3 ft/min when r = 4

dV

dt
=

d
dt

(
1

3
πr2h

)
=

1

3
π

[
2r · dr

dt
· h + r2 · dh

dt

]
Evaluating at h = 2 and r = 4 gives:

dV

dt
=

1

3
π
[
2 · 4 · 3 · 2 + 42 · 2

]
=

1

3
π [48 + 82]

=
80π

3
ft3/sec.
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Example: Does the function f (x) = 2x3 − sin(x − 1) has a zero?

Solution:

We have:

f (−2) = 2(−2)3 − sin(−3) ≤ −16 + 1 = −15 < 0

f (2) = 2 · 23 − sin(1) ≥ 16− 1 = 15 > 0

Since f (x) is a continuous function, it has by the intermediate
value theorem a zero on the interval [−2, 2].
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