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Implicit Differentiation

Implicit differentiation is a method for finding the slope of a curve,
when the equation of the curve is not given in “explicit” form

y = f(x), but in “implicit” form by an equation g(x,y) = 0.
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3) 4-leaf clover  (x% + y?)3 = (x® — y?)?
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Example: a) Find % by implicit differentiation given that
x? +y? =25
General Procedure

d
1. Take e of both sides of the equation.
X

2. Write y/ = 3—5; and solve for y’.

Solution:
Step 1
d  , 5 d
il )
dx (X +y) dx >
d o, d 5
Use: L2 4 (F(x))? = 2f(x) - F(x) = 2y - y/
dx dx
2x +2y -y =
Step 2
2y -y’ = —2x
, 2x X
y = —_— = =
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Solution:
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Example:

b) What is the slope of the circle at (3,4)?

c) What is the slope at (5,0)

Solution:
b) The slope is y’ =-3
3.4)
c) The slope is y/ =-2 (undefined)

(5,0)

h)



Example:

b) What is the slope of the circle at (3,4)?

c) What is the slope at (5,0)

Solution:

b) The slope is y’ =-3
(34)

c) The slope is y/ = —%
(5,0)

(undefined)

The curve has a vertical tangent at (5,0).

)
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Restated derivative rules using y, y’ notation
Let y = f(x) and y' = f'(x) = L.
General Power Rule
A n
de =ny y
Chain Rule

Product Rule
d7 h(X) . g()/) = h/(X) . g(y) + h(X) . g/(y) _y,

L0 -8)=Hy)-y - gly) +h(y)-g'(y)-y

Exponential Rule

C%( e8) = 80 . g/ (y) .
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2 _ (.3
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d
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Example: Find % by implicit differentiation for the curve
2 _ (.3

xy© = sm(y )

Solution: Two steps.

d
Step 1 (take I of both sides)

d o d 3
&(xy )= I sm(y )
product rule  chain rule
d 2 d o _ 3y d 3
(o) v +x (g ) =cos(y”) - -y
1-y*+x-2y-y' =cos(y®)-3y* -y
Step 2 (solve for y')

2xyy’ — 3cos(y?)y?y’ = —y?

(2xy —3cos(y®)y?)y' = —y
;) —y? _ y
2xy — 3cos(y3)y?  3ycos(y3) — 2x

2

y

Make sure that there is no y’ left on right-hand side.
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Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.

Step 1
d 3_d
Sy =) = (=)
d d
2 2 - 3: _
1 (x%) -y + w OlX(y) 1-0



Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.

Step 1
d 3y d
&(xy—y)—dx(x—ﬂ
d 5 d d , 3 B
dX(X)y+X dXy—dx(y)—l 0

2xy +x% -y —3y? .y =1



Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.

Step 1
d 3, d
Ly -yy= Lo
d 5 d d 3y
o)y Xty = (y7) =10
2xy +x% -y —3y? .y =1

Step 2

(x*=3y?) -y =1-2xy



Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.

Step 1
d d
S0Py -y = (- T)
d, 5 5 d d 5
all ) G — - — —1_
dX(X)y+X LA O 0
2xy +x% -y —3y? .y =1

Step 2
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Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.

Step 1
d d
&(Xzy—y:*}):dfx(x—?)
d , d d, 3
dX(X) y+x dXy—dx(y)—l—O
2xy +x% -y —3y? .y =1
Step 2
(x*=3y?) -y =1-2xy
,_1—2xy
- x2—3y2
) o 1-2:1-2 -3 3
Y T 12-3.22 T 11 11

(1,2)



Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.
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d d
&(Xzy—y:*}):dfx(x—?)
d , d d, 3
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Example: Find the equation of the tangent line to the curve
X%y —y3 =x—Tat (1,2).

Solution: We first find y’.

Step 1
d d
&(Xzy—y:*}):dfx(x—?)
d , d d, 3
dX(X) y+xt oy = () =1-0
2xy +x% -y —3y? .y =1
Step 2
(x*=3y?) -y =1-2xy
,:1—2xy
x2 —3y2
o 1-201.2 -3 3
Yoy 1B-322 —11 11

Point slope form of tangent line: y = m(x — x1) + y1
y=2x-1)+2=2x+1
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Does this work for every implicit given curve g(x,y) = 0?7

Note that every equation in x and y can be written in this form by
bringing everything on the left-hand side.

Answer is yes!

Solution:

Step 1
d d
d7 g(X) y) - d7 0

gx(x,y)+g/(x,y) -y =0
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Here, g« and g, are the “partial derivatives” of g(x,y) with
respect to the first variable x resp. the second variable y (ignoring
here that y depends on x). That is, one differentiates g(x, y) for x
and keeps y fixed and vice versa.
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Example: Find the coordinates of the four points on the
lemniscate curve (x*> 4+ y?)? = 4(x®> — y?) on which the tangent
line is horizontal.

Solution: We compute y’ by implicit differentiation.

L0y = (2 - )

d d
2 2y . 2 2 _ 2
2(x* + y?) —dx(x +y°) =8x 4dX(y)

2> +y?)(2x+2y - y') =8x—8y - y/



Example: Find the coordinates of the four points on the
lemniscate curve (x*> 4+ y?)? = 4(x®> — y?) on which the tangent
line is horizontal.

Solution: We compute y’ by implicit differentiation.
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Example: Find the coordinates of the four points on the
lemniscate curve (x*> 4+ y?)? = 4(x®> — y?) on which the tangent
line is horizontal.

Solution: We compute y’ by implicit differentiation.

dio o _d o o
dX(X +y?) —dx(4(X ¥9))
d d
2 2y . 2 2y _ 2
2(x* +y%) *dx(x +y%) = 8x 4dx(y)
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4x(x*> +y?) —8x = =8y -y — 4(x> + y?)yy’
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We have to solve for y’ = 0 which requires:
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Example: Find the coordinates of the four points on the
lemniscate curve (x*> 4+ y?)? = 4(x®> — y?) on which the tangent
line is horizontal.

Solution: We compute y’ by implicit differentiation.
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2 2y . 2 2y _ 2
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For x = 0 one needs y* = —4y? i.e. y = 0 is only solution.




Example: Find the coordinates of the four points on the
lemniscate curve (x*> 4+ y?)? = 4(x®> — y?) on which the tangent
line is horizontal.

Solution: We compute y’ by implicit differentiation.

dio o _d o o
dX(X +y?) —dx(4(X ¥9))
d d
2 2y . 2 2y _ 2
2(x* +y%) *dx(x +y%) = 8x 4dx(y)

2(x* +y?)(2x +2y-y') =8x — 8y -y’
Ax(x* +y?) —8x = =8y -y —4(x* +y?)yy’
;o Ax(xP+y?)—8x  x(x®+y?) —2x
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We have to solve for y’ = 0 which requires:
x(x2+y?) —2x=0,ie. x=0o0r x>+ y2=2.
For x = 0 one needs y* = —4y? i.e. y = 0 is only solution.
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Example: Find the coordinates of the four points on the
lemniscate curve (x*> 4+ y?)? = 4(x®> — y?) on which the tangent
line is horizontal.

Solution: We compute y’ by implicit differentiation.

2 +y2>2 s

22+ y2)- (24 ) = 8x 4L ()

2(x*> 4y )(2x+2y y)y=8x—-8y-y
Ax(x* +y?) —8x = =8y -y —4(x* +y?)yy’
;o Ax(xP+y?)—8x  x(x®+y?) —2x
T8y -4 +y%)y  y(P+yA)+2y
We have to solve for y’ = 0 which requires:
x(x2+y?) —2x=0,ie. x=0o0r x>+ y2=2.
For x = 0 one needs y* = —4y? i.e. y = 0 is only solution.

For x? 4+ y? = 2 one has 22 = 4(x? — y?) which gives 2x? = 3 or

x=%4/3/2and y = £,/1/2.

Only the four points (£+/3/2, ++/1/2) but not (0,0) are solutions.



Lemniscate curve: (x2 + yz)2 =4(x% - yz).
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Iny =In(x*) = xInx
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Example: Find the first and second derivative of y = f(x) = x*.
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a) We use logarithmic differentation:

Iny =In(x*) = xInx

d d

I = XY —
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L

1
y =1llnx+x-—=
X
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corresponding rules don’t apply.

a) We use logarithmic differentation:
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corresponding rules don’t apply.

a) We use logarithmic differentation:
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Example: Find the first and second derivative of y = f(x) = x*.
Solution: Note that f(x) is not of the form b* or x? and thus the
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a) We use logarithmic differentation:
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Example: Find the first and second derivative of y = f(x) = x*.

Solution: Note that f(x) is not of the form b* or x? and thus the
corresponding rules don’t apply.
a) We use logarithmic differentation:

Iny =In(x*) = xInx

d d
o Iny = (xX):d—X(xInx)
1, 1
—y =lInx+x-—=Inx+1

X

Yy =y -(Inx+1)=x*(Inx +1)
d

d
7 _ X
b) vy de Ep (x*(Inx + 1))



Example: Find the first and second derivative of y = f(x) = x*.
Solution: Note that f(x) is not of the form b* or x? and thus the
corresponding rules don’t apply.

a) We use logarithmic differentation:

Iny =In(x*) = xInx

dd Iny =In(x*) = (;ix (xInx)
1

1

Y =1l-lnx+x-==Inx+1
X

Yy =y -(Inx+1)=x*(Inx +1)

d d
7 _ X
b) vy de Ep (x*(Inx + 1))

d d
y”:d—x(xx)-(lnx—i—l)—I—xx-d—X(Inx—l—l)



Example: Find the first and second derivative of y = f(x) = x*.
Solution: Note that f(x) is not of the form b* or x? and thus the
corresponding rules don’t apply.
a) We use logarithmic differentation:

Iny =In(x*) = xInx

d

d
| Y= =
oy = In(x*) dX(xlnx)
1

/

1
cy=1-Inx+x-—=Inx+1
X

Yy =y -(Inx+1)=x*(Inx +1)

d d
7 _ X
b) vy de Ep (x*(Inx + 1))
d d
" __ X\ . X,
y _dx(X) (Inx +1) + x dX(Inx—l—l)

1
y'=x*(Inx+1)-(Inx+1)+x*- = (using a) again)
x



Example: Find the first and second derivative of y = f(x) = x*.
Solution: Note that f(x) is not of the form b* or x? and thus the
corresponding rules don’t apply.
a) We use logarithmic differentation:

Iny =In(x*) = xInx

d

o Iny = (xX):(;iX(xInx)
1

/

1
cy=1-Inx+x-—=Inx+1
X

Yy =y -(Inx+1)=x*(Inx +1)

d d
7 _ X
b) y de Ep (x*(Inx + 1))
d d
" __ X\ . X,
y _—dx(x )-(Inx+1)+x dX(Inx+1)
1
y ' =x*(Inx+1)-(Inx+ 1)+ x*- ~ (using a) again)

5

Y =x*((Inx +1)? + .



