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Derivative of General Exponential functions

We know:
d X X
I ef=e
By the chain rule:

a4 e = . f/(x)

dx
Example: Find the derivative of 2%,

Solution: Recall 2 = "2, 50 2% = (e'”z)x = e(in2)x

d d d
X _ (In2)x _ ,(In2)x
Thus . 2 v e . ((In2)x)
= (In2)-2x,
Theorem
d

— b* = (Inb)-b*, for any base b > 0.

dx
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Example: Find i7’(2.
dx

Solution: We apply the chain rule with outer function f(u) =7
and inner function g(x) = x?:
d _.e 2y d
7 (] L70) L 2
e 7 (In7)-7 e X

—2In7 -x-7¢

Example: Find i55X.
dx

Solution:

d 5X 5X d
el — (| ) . pX
I 5 (In5)-5 o 5

= (In5)-5% - (In5) - 5*
=In?5.5%.5%
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The Derivative of the Natural Logarithm function

dy
E le: Let y = Inx. Find -Z.
xample: Let y = Inx. Fin e

Solution:
We have e’ = "X = x.
We take now the derivative on both sides:
d Y d o
—_— e = —
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y.—=1 (by the chain rule)
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The Derivative of the Natural Logarithm function

d
Example: Let y = Inx. Find <.
dx

Solution:
We have e’ = "X = x.
We take now the derivative on both sides:
d Y d
— e = —x
dx dx
y 1 (by the chain rule)
dx
d 1 1
14 = —, since ¥ = x.

Thus: — = —
us dx e X

We have shown the following rule:

Theorem

1
— Inx = —
X

dx
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Solution:
d 1 d
] _ 3 - - .= _ 3
I n(x — 5x>) o dX(X 5x7)
1
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x — 5x3 ( )
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Example: Find (;ix In(x — 5x3).

Solution:
d 1 d
] _ 3 - - .= _ 3
I n(x — 5x>) o dX(X 5x7)
1
— (1= 15x2
x — 5x3 ( )
_ 1-15x2
- x—5x8
. d
Example: Find — xIn x.
dx
Solution:
—xInx=—(x)-Inx+ i(In)
dxX X_dx x X dx x
:1-Inx—|—x-1

X
=1+Inx
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X

Solution:
In x

We have | — nx

e have log, x = 1 —
Thus:

| d Inx 1 |
— logpx = — — = c— Inx=—
dx 8% T dxnb  Inb dx

1

In

.

1
X

(Remember)
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Solution:
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e have log, x = 1 —
Thus:
dx 8% T Ak b Inb dx "X Inb

d
Example: Compute I logs(logs(x)).
bs
Solution:
11
~In5 loggx dx
1 1 1 1

= logs(logs(x)

:m.log5x.ln5.;

1
- R b
. (Remember)



d
Example: Compute I log,, x for any base b > 0.
X

Solution:
In x
We have | — nx
e have log, x = 1 —
Thus:
dinx 1 d 11
O OB T i inb T inb dx "X T inp x  (Remember)

d
Example: Compute I logs(logs(x)).
bs
Solution:
11
~In5 loggx dx
1 1 1 1

= logs(logs(x)

:m.log5x.ln5.;
1

In5 - x logg x
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Theorem
4, =Y
dx
Indeed, by the chain rule:
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Logarithmic Differentiation
Let y = f(x), y' = & = f'(x).

Theorem
4, =Y
dx
Indeed, by the chain rule:
d d 1 d 1 y'
— Iny = — In(f = —f(xX)= — - f(x) = .
dx ny dx n(f(x)) f(x) dx (x) f(x) (x) y

This is sometimes helpful to compute the derivative of a function
which is mainly a combination of products, quotients or powers:

1. Take ‘In’ of both sides and expand using the folowing
rules:

» In(AB) =InA+1InB
» In(A/B)=InA—1InB
> In(A ”) =nlnA

2. Take ‘£’ of both sides, using the theorem for the left side.
3. Solve for y'.
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y = /xsind x.
Solution: Step 1:
Iny = In({/xsin® x)
= In(¥/x) + In(sin® x)
= In(x*/*) + In((sin x)3)
Inx 4 3In(sin x)

d /1 d .
— Iny = P (Zlnx)+a(3|n(smx))
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Example Fmd ~ by logarithmic differentiation, given
= ¥xsindx.
Solution: Step 1:
Iny = ( X sin x)
= In(¥/x) + In(sin® x)
= In(x*/*) + In((sin x)3)
I

= 2Inx + 3In(sinx)
Step 2:
% n —%(an)—i—%(&n(sinx))
y_1l 3 1 ek
y 4 x sin x
Step 3:

y' = [%+3cotx] -y

1
y' = [-= + 3cotx]|V/xsin® x
4x
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The trick we have used to compute the derivative of the natural
logarithm works in general for inverse functions.

Recall that the inverse function f~1(x) of a function f(x) is
defined by the property that f(f~1(x)) = x.

Warning: Do not confuse f~1(x) with the reciprocal 1/f(x).

Theorem
d 4, 1
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Derivative of Inverse Functions
The trick we have used to compute the derivative of the natural
logarithm works in general for inverse functions.

Recall that the inverse function f~1(x) of a function f(x) is
defined by the property that f(f1(x)) = x.
Warning: Do not confuse f~1(x) with the reciprocal 1/f(x).
Theorem

d 1

— f1 -

P T )

Proof: We differentiate both sides of f(f~%(x)) = x:

d ., d
5 (00 = 4o x
FI(F1(x)) - di fl(x)=1 (by the chain rule)
X
1

d
Thus: d—Xf 1(X):m.



Graphical Understanding

) // Y =f(x)

(B) The tangent line to the inverse y = g(x) 15)
the reflection of the tangent line to y =/l

(A) If L has slope m, then its
reflection L’ has slope 1/m.



Inverses of the trigonometric functions
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Inverses of the trigonometric functions

T naverse (Osime -
y = cos ' x)zarccoslx) , ~lsxs/, Q%ystr

cos~'[o) = rr/'z

(05"(0)
cos~'[-1)

/\/:(OS(B)

"

0

o
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Example: Find i arcsin x.
dx

Solution:

1

arcsin x = sin” ~ x is the inverse function of sin x.

: d . . .
Since o sin x = cos x, by the theorem for inverse functions:
X
csi sin™! 1
— arcsinx = — sinm T x=————
dx dx cos(sin~! x)

Using sin? z + cos?z = 1 or cosz = \/1 — sin? z, we obtain:
1

\/1 — sin?(sin~1 x)

— arcsinx =




Example: Find i arcsin x.
dx

Solution:

arcsin x = sin~ ! x is the inverse function of sin x.

Since % sin x = cos x, by the theorem for inverse functions:
. .1 1

o arcsin x = I sin” " x = m

Using sin? z + cos?z = 1 or cosz = \/1 — sin? z, we obtain:

1
— arcsinx = =

\/l—sm (sin~1x) V1-x?
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Solution:
We use again the theorem for the derivative of inverse functions.
. d 5 1
Since — tanx = sec” x = ——— we get:
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The arcus tangent function y = arctan x is defined for x € R with
-5 <y<3.
.. d 1
Example: Find I arctan x = tan™ " (x).
X

Solution:

We use again the theorem for the derivative of inverse functions.

. d 5 1
Since — tanx = sec” x = ——— we get:
dx COs“ X
d d 1 1 5 1
— arctanx = — tan” "X = ————-—— = cos“(tan” " x).
dx dx sec?(tan—! x) ( )

———, we obtain:

Using sin®z +cos?z =1 ortan’z+1 = 5
cos? z



The arcus tangent function y = arctan x is defined for x € R with
-5 <y<3.
.. d 1
Example: Find I arctan x = tan™ " (x).
X

Solution:

We use again the theorem for the derivative of inverse functions.

. d 5 1
Since — tanx = sec” x = ——— we get:
dx 05° X
d d 1 1 2 1
— arctanx = — tan” "X = ————-—— = cos“(tan” " x).
dx dx sec?(tan—! x) ( )

———, we obtain:

Using sin®z +cos?z =1 ortan’z+1 = 5
cos? z

1
— arctanx =
dx 1+ tan?(tan—!x)



The arcus tangent function y = arctan x is defined for x € R with
-5 <y<3.
.. d 1
Example: Find I arctan x = tan™ " (x).
X

Solution:

We use again the theorem for the derivative of inverse functions.

. d 5 1
Since — tanx = sec” x = ——— we get:
dx 05° X
d d 1 1 2 1
— arctanx = — tan” "X = ————-—— = cos“(tan” " x).
dx dx sec?(tan—! x) ( )

———, we obtain:

Using sin®z +cos?z =1 ortan’z+1 = 5
cos? z

1 1
— arctanx = =
dx 2o 1+tan?(tan~1x) 14 x2



Theorem

f(x) f'(x)
arcsi !
resinx | ——
v1—x2
-1
arccosx | ——
V1—x2
) 1
arctan x
14+ x2
1
arcsecx




