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Derivative of General Exponential functions

We know:
d
dx

ex = ex

By the chain rule:
d
dx

ef (x) = ex · f ′(x)

Example: Find the derivative of 2x .

Solution: Recall 2 = e ln 2, so 2x =
(
e ln 2

)x
= e(ln 2)x .

Thus
d
dx

2x =
d
dx

e(ln 2)x = e(ln 2)x d
dx

((ln 2)x)

= (ln 2) · 2x .

Theorem
d
dx

bx = (ln b) · bx , for any base b > 0.
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Example: Find
d
dx

7x2
.

Solution: We apply the chain rule with outer function f (u) = 7u

and inner function g(x) = x2:

d
dx

7x2
= (ln 7) · 7(x2) · d

dx
x2

= 2 ln 7 · x · 7x2

Example: Find
d
dx

55x
.

Solution:

d
dx

55x
= (ln 5) · 55x · d

dx
5x

= (ln 5) · 55x · (ln 5) · 5x

= ln2 5 · 5x · 55x
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The Derivative of the Natural Logarithm function

Example: Let y = ln x . Find
dy

dx
.

Solution:
We have ey = e ln x = x .

We take now the derivative on both sides:
d
dx

ey =
d
dx

x

ey · dy

dx
= 1 (by the chain rule)

Thus:
dy

dx
=

1

ey
=

1

x
, since ey = x .

We have shown the following rule:

Theorem
d
dx

ln x =
1

x
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Example: Find
d
dx

ln(x − 5x3).

Solution:

d
dx

ln(x − 5x3) =
1

x − 5x3
· d
dx

(x − 5x3)

=
1

x − 5x3
· (1− 15x2)

=
1− 15x2

x − 5x3

Example: Find
d
dx

x ln x .

Solution:

d
dx

x ln x =
d
dx

(x) · ln x + x · d
dx

(ln x)

= 1 · ln x + x · 1

x
= 1 + ln x
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Example: Compute
d
dx

logb x for any base b > 0.

Solution:

We have logb x =
ln x

ln b
.

Thus:

d
dx

logb x =
d
dx

ln x

ln b
=

1

ln b
· d
dx

ln x =
1

ln b
· 1

x
. (Remember)

Example: Compute
d
dx

log5(log5(x)).

Solution:
d
dx

log5(log5(x)) =
1

ln 5
· 1

log5 x
· d
dx

log5 x

=
1

ln 5
· 1

log5 x
· 1

ln 5
· 1

x

=
1

ln2 5 · x log5 x
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Logarithmic Differentiation

Let y = f (x), y ′ = dy
dx = f ′(x).

Theorem
d
dx

ln y =
y ′

y

Indeed, by the chain rule:

d
dx

ln y =
d
dx

ln(f (x)) =
1

f (x)
· d
dx

f (x) =
1

f (x)
· f ′(x) =

y ′

y
.

This is sometimes helpful to compute the derivative of a function
which is mainly a combination of products, quotients or powers:

1. Take ‘ln’ of both sides and expand using the folowing
rules:

I ln(AB) = ln A + ln B
I ln(A/B) = ln A− ln B
I ln(An) = n ln A

2. Take ‘ d
dx ’ of both sides, using the theorem for the left side.

3. Solve for y’.
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Example: Find dy
dx by logarithmic differentiation, given

y = 4
√

x sin3 x .

Solution: Step 1:

ln y = ln
(

4
√

x sin3 x
)

= ln( 4
√

x) + ln(sin3 x)

= ln(x1/4) + ln((sin x)3)

= 1
4 ln x + 3 ln(sin x)

Step 2:
d
dx

ln y =
d
dx

(1

4
ln x) +

d
dx

(3 ln(sin x))

y ′

y
=

1

4
· 1

x
+ 3 · 1

sin x
· cos x

Step 3:

y ′ =
[ 1

4x
+ 3 cot x

]
· y

y ′ =
[ 1

4x
+ 3 cot x

]
4
√

x sin3 x
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Derivative of Inverse Functions
The trick we have used to compute the derivative of the natural
logarithm works in general for inverse functions.

Recall that the inverse function f −1(x) of a function f (x) is
defined by the property that f (f −1(x)) = x .

Warning: Do not confuse f −1(x) with the reciprocal 1/f (x).

Theorem
d
dx

f −1(x) =
1

f ′(f −1(x))

Proof: We differentiate both sides of f (f −1(x)) = x :

d
dx

f (f −1(x)) =
d
dx

x

f ′(f −1(x)) · d
dx

f −1(x) = 1 (by the chain rule)

Thus:
d
dx

f −1(x) =
1

f ′(f −1(x))
.
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Graphical Understanding



Inverses of the trigonometric functions



Inverses of the trigonometric functions



Example: Find
d
dx

arcsin x .

Solution:

arcsin x = sin−1 x is the inverse function of sin x .

Since
d
dx

sin x = cos x , by the theorem for inverse functions:

d
dx

arcsin x =
d
dx

sin−1 x =
1

cos(sin−1 x)

Using sin2 z + cos2 z = 1 or cos z =
√

1− sin2 z , we obtain:

d
dx

arcsin x =
1√

1− sin2(sin−1 x)
=

1√
1− x2
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The arcus tangent function y = arctan x is defined for x ∈ R with
−π

2 < y < π
2 .

Example: Find
d
dx

arctan x = tan−1(x).

Solution:

We use again the theorem for the derivative of inverse functions.

Since
d
dx

tan x = sec2 x =
1

cos2 x
we get:

d
dx

arctan x =
d
dx

tan−1 x =
1

sec2(tan−1 x)
= cos2(tan−1 x).

Using sin2 z + cos2 z = 1 or tan2 z + 1 =
1

cos2 z
, we obtain:

d
dx

arctan x =
1

1 + tan2(tan−1 x)
=

1

1 + x2
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Theorem

f (x) f ′(x)

arcsin x
1√

1− x2

arccos x
−1√

1− x2

arctan x
1

1 + x2

arcsecx
1

|x |
√

x2 − 1


