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Both are periodic functions with period 27.




Section 3.6 — Trigonometric Derivatives
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Find I sin x graphically and algebraically.
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— sinx = cosx
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Solution: algebraically
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Theorem (Derivatives of Trigonometric functions)

d .
— sinx = cosx
dx
— Ccosx = —sinx
dx

5 1
— tanx = sec”x = —5
dx COS% X
d 5 1
— Ccotx = —csC X=——>
dx sin‘ x
— secx = secxtanx
dx
— CSCX = —CSCXxcotx
dx

Here: sec? x = (sec x)?, etc.

Note the pattern: The derivatives of the “co”-trigonometric
functions all have minus (-) signs.
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For sin x, we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that the
cosine is the shifted sine function.

The remaining trigonometric functions can be obtained from the
sine and cosine derivatives.
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Example: Find — tanx.
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Solution:
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— tanx = — use quotient rule
dx dx \ cosx .



For sin x, we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that the
cosine is the shifted sine function.

The remaining trigonometric functions can be obtained from the
sine and cosine derivatives.

d
Example: Find — tanx.
dx

Solution:

d ¢ d [sinx ( tient rule)
— tanx = — use quotient rule
dx dx \ cosx .

(i sinx) - cosx — sin x - (= cos x)
dx . dx
cos” x




For sin x, we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that the
cosine is the shifted sine function.

The remaining trigonometric functions can be obtained from the
sine and cosine derivatives.

d
Example: Find — tanx.
dx

Solution:
d tanx = d <sinx> (use quotient rule)
dx dx \ cosx
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(7, Sin X) - Cos x —25|nx . (a Cos x)
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cos x cos x — sin x(— sin x)

COS2 X



For sin x, we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that the
cosine is the shifted sine function.

The remaining trigonometric functions can be obtained from the
sine and cosine derivatives.
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Example: Find — tanx.
dx

Solution:
d d [sinx :
— tanx = — (use quotient rule)
dx dx \ cosx

(=— sinx)-cosx —sinx - (— cosx

dx ) . (dx )

cos” x
_ cos x cos x — sin x(— sin x)
cos® x

_ cos® x + sin® x

COS2 X



For sin x, we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that the
cosine is the shifted sine function.

The remaining trigonometric functions can be obtained from the
sine and cosine derivatives.

d
Example: Find — tanx.
dx

Solution:
d d [sinx :
— tanx = — (use quotient rule)
dx dx \ cosx
(=— sinx)-cosx —sinx - (— cosx
dx ) . (dx )
cos” x
_ cos x cos x — sin x(— sin x)
cos® x
2 . 2
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For sin x, we showed already how to get the derivative.

For cos x this can be done similarly or one uses the fact that the
cosine is the shifted sine function.

The remaining trigonometric functions can be obtained from the
sine and cosine derivatives.

d
Example: Find — tanx.
dx

Solution:
d d [sinx :
— tanx = — (use quotient rule)
dx dx \ cosx
(=— sinx)-cosx —sinx - (— cosx
dx ) . (dx )
cos” x
_ cos x cos x — sin x(— sin x)
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Section 3.7 — The Chain Rule

Let x, u, y be quantities such that
u=g(x) y = f(u)

changein x —— changeinu —— changeiny

% = change in y with respect to x

% = change in u with respect to x

% = change in y with respect to u
Theorem (Chain Rule)
dy —dy du

dx  du dx

Leibniz version of the chain rule
dy dy du
o 7

x=a u=g(a x=a
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The chain rule in function notation

u=g(x) y = f(u)
y = f(g(x)) = composition of f and g

d dy d
Chain rule y_o d in Leibniz notation becomes
dx duv dx
Theorem (Chain Rule)
d
o [e(x) = f'(g(x)) - &'(x)
The derivative of a composition is the derivation of the “outer”
function evaluated at the “inner” function times the derviative of
the “inner” function.

d
Example: Find P sin(x?).

Solution:



The chain rule in function notation

u=g(x) y = f(u)
y = f(g(x)) = composition of f and g
dy dy du

Chain rule == = — - — in Leibniz notation becomes
dx duv dx

Theorem (Chain Rule)
= #(g(x) = F(8(x)) -£'()

The derivative of a composition is the derivation of the “outer”
function evaluated at the “inner” function times the derviative of
the “inner” function.
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Example: Find P sin(x?).
Solution:

% sin(x?) = cos(x?) - %xz



The chain rule in function notation

u=g(x) y = f(u)
y = f(g(x)) = composition of f and g
dy dy ‘ du

Chain rule == = — - — in Leibniz notation becomes
dx duv dx

Theorem (Chain Rule)

= #(g(x) = F(8(x)) -8/ ()

The derivative of a composition is the derivation of the “outer”
function evaluated at the “inner” function times the derviative of
the “inner” function.

d
Example: Find P sin(x?).
Solution:

% sin(x?) = cos(x?) - % x? = 2x cos(x?).
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This is a special case of the chain rule. The outer function is
y = u", the inner is u = g(x).
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Theorem (General Power Rule)
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This is a special case of the chain rule. The outer function is
y = u", the inner is u = g(x).

d d
Example: e VX3 4 2x = o (x3 + 2x) 1/3

17 d
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Example: eVl (x —x%) = I [sin(x — x?)]

5[sin(x — xz)]4 . (%( sin(x — x?)

= 5[sin(x — xz)]4 cos(x — x?) - dix (x — x?)

= 5[sin(x — x2)]4cos(x —x?) - (1 -2x)
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Example: Compute the derivative of \/x2 +1/x2 +/x.

Solution:
d
_ X2—|— X2+\/)?
dx
! (2 + (
= X
20/x2 + /X2 + /x 2\/X2+
2x+ﬁ
_ s
2



Example: Compute the derivative of \/x2 +1/x2 +/x.

Solution:
d
_ X2 + X2 + \/;
dx
1 1 1
= - 2x + . ( x + ))
2/x2 + /X2 + Jx ( 2¢/x% 4 V/x 2Vx
2x+ﬁ
W + 2x

24/ x% 4+ /X% + /x

Homework: Compute the second derivative.
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Homework solution

60x7/2 + 42x2 — T+/x2 + \/x 4+ 4/x2 + /xx3/2 —16/x2 + /xx3

3/2
64x3/2 (x3/2 4+ 1) X2+\/;<X2+ X2+\/;> /



