Calculus I - Lecture 26 - Area and Volume

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

April 28, 2014

Let A = area of region between the curves y = f(x) and y = g(x)over [a, b] (Red Area).

Assume $f(x) \ge g(x)$ on [a, b].

$$\underbrace{A}_{\text{Red}} = \underbrace{\int_{a}^{b} f(x) \, dx}_{\text{Red} + \text{Green}} - \underbrace{\int_{a}^{b} g(x) \, dx}_{\text{Green}} = \int_{a}^{b} (f(x) - g(x)) \, dx$$

The calculation is usually simpler if you subtract the functions first.

Example: Find the area of the region trapped between the curves $y = x^2$ and y = 6 - x.

Solution:

Intersection points: $x^2 = 6 - x \Leftrightarrow x^2 + x - 6 = 0 \Leftrightarrow (x+3)(x-2) = 0 \Leftrightarrow x = -3 \text{ or } x = 2$

Thus x runs from -3 to 2. Furthermore, we see $6 - x \ge x^2$ in that range. Therefore:

The same method works if either f(x) or g(x) is negative or $g(x) \ge f(x)$. In the later case integrate |f(x) - g(x)| = g(x) - f(x).

Example: Find the area of the region trapped between y = -2x and $y = 6 - x^2$. Just set up the integral.

Solution:

Intersection points: $-2x = 6 - x^2 \Leftrightarrow x^2 - 2x - 6 = 0 \Leftrightarrow$

$$x = \frac{2 \pm \sqrt{4 - 4 \cdot (-6)}}{2} = \frac{2 \pm \sqrt{28}}{2} = 1 \pm \sqrt{7}$$

Thus x runs from $1 - \sqrt{7}$ to $1 + \sqrt{7}$. Furthermore, we have $6 - x^2 \ge -2x$ in that range. Therefore:

$$A = \int_{1-\sqrt{7}}^{1+\sqrt{7}} (\text{Top} - \text{Bottom}) \, dx = \int_{1-\sqrt{7}}^{1+\sqrt{7}} (6 - x^2 - (-2x)) \, dx$$

Areas by horizontal slices

A = area of region between x = f(y) and x = g(y) over the y -interval [a, b].

Assume $g(y) \leq f(y)$.

dA = area of thin horizontal slice of width dylength $\cdot dy = (f(y) - g(y)) \cdot dy$ $A = \int_{a}^{b} da = \int_{a}^{b} (f(y) - g(y)) \cdot dy$

Same formula with y instead of x.

Example: Find the area of the region bounded by $x = y^2 - 4y$ and the *y*-axis.

Solution:

Intersection between curve and y-axis:

$$x = y^2 - 4y = 0 \iff y(y - 4) = 0 \iff y = 0 \text{ or } y = 4.$$

Thus:

Example: Find the area of the region between $y = \cos x$ and $y = \cos(2x)$ over $[0, \frac{2}{3}\pi]$.

Solution:

We note that 0 and $\frac{2}{3}\pi$ are the two intersection points in $[0, 2\pi)$.

$$A = \int_0^{\frac{2}{3}\pi} (\cos x - \cos(2x)) \, dx = \left(\sin x - \sin(2x) \cdot \frac{1}{2}\right) \Big|_0^{\frac{2}{3}\pi}$$
$$= \sin(\frac{2}{3}\pi) - \frac{1}{2}\sin(2 \cdot \frac{2}{3}\pi) = \frac{\sqrt{3}}{2} - \frac{1}{2}(-\frac{\sqrt{3}}{2})$$
$$= \frac{3\sqrt{3}}{4}$$

Theorem (Volume by Cross-Section Formula)

$$V = \int_a^b A(y) \, dy$$

where A(y) is the area of a cross-section perpendicular to the y-axis.

If the cross-sections are perpendicular to the x-axis the formula is:

$$V = \int_a^b A(x) \, dx$$

where A(x) is the area of a cross-section.

Example: Find the volume of a solid whose base is a quarter disk or radius 5 the *xy*-plane as shown and such that each cross section perpendicular to the *x*-axis is a square.

Solution: $y = \sqrt{5^2 - x^2} \Leftrightarrow x^2 + y^2 = 5^2$, circle of radius 5. Cross sectional area $A(x) = y^2 = 5^2 - x^2$.

$$V = \int_0^5 A(x) \, dx = \int_0^5 \left(5^2 - x^2\right) \, dx$$
$$= \left(25x - \frac{x^3}{3}\right) \Big|_0^5 = 24 \cdot 5 - \frac{5^3}{3} = 125 \cdot \frac{2}{3} = \frac{250}{3}.$$

For some regions, the volume can be calculated in more than one way using cross sections.

Example: Find the volume of the wedge

Solution: a) Using cross section perpendicular to *x*-axis: Area of green triangle $= \frac{1}{2} \cdot 4 \cdot 3 = 6$.

$$V = \int_0^6 A(x) \, dx = \int_0^6 \, dx = 6x \Big|_0^6 = 36$$

Solution: b) Using cross section perpendicular to *z*-axis:

Area of red rectangle = $6 \cdot h = 6 \cdot \frac{3}{4}(4-z) = \frac{9}{2}(4-z)$.

$$V = \int_0^4 A(x) \, dx = \int_0^4 \frac{9}{2} (4-z) \, dx = \frac{9}{2} (4z - \frac{1}{2}z^2) \Big|_0^4 = \frac{9}{2} (16-8) = \frac{36}{2}$$