Calculus I - Lecture 20 - The Indefinite Integral

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

April 6, 2014

Reminder: Exam 3 on Thursday, April 10.

Review in Wednesday's Lecture

Practice Exam online on course homepage

Recall that there are two main parts of Calculus

1. Derivatives: Measures instantaneous change

2. Integrals: Measures cumulative amounts

We are now ready to begin part 2. It begins with the study of the reverse operation of taking the derivative.

Definition (Antiderivative)

A primitive or antiderivative of a function f(x) is function F(x) such that F'(x) = f(x).

Example: Find an antiderivative of x^3 , by trial and error.

Solution: Initial guess: x^4 (since derivation decreases the degree of a power function by 1):

 $\frac{d}{dx}x^4 = 4x^3.$ Thus: $\frac{d}{dx}(\frac{1}{4}x^4) = \frac{1}{4}(4x^3) = x^3.$ Note: $\frac{d}{dx}(\frac{1}{4}x^4 - 7) = x^3$ All functions $F(x) = \frac{1}{4}x^4 + C$, C any constant, are antiderivatives.

Did we find all antiderivatives?

Theorem

Let F(x) be an antiderivative of the function f(x) defined on (a, b). Then any antiderivative on (a, b) of f(x) is of the form F(x) + C for some constant C.

Proof: Let G(x) be another antiderivative of F(x). Set H(x) = G(x) - F(x). Then

$$H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0.$$

We claim that H(x) must be a constant function. For, if it would be not, there exist (at least) two points x = u and x = v in (a, b)with $H(u) \neq H(v)$. By the mean value theorem there exists then a point x = c in (u, v) such that

$$\frac{H(u)-H(v)}{u-v}=H'(c).$$

But since $H(u) \neq H(v)$ this would mean $H'(c) \neq 0$, a contradiction. Thus H(x) = C for some constant C. This implies G(x) = F(x) + C. q.e.d.

Definition (Indefinite Integral)

The indefinite integral or general antiderivative $\int f(x)dx$ of a function f(x) stands for all possible antiderivatives of f(x) defined on an interval, i.e.

$$\int f(x) \, \mathrm{d}x = F(x) + C$$
, where C is a constant

and F(x) is an arbitrary antiderivative of f(x).

Notation: In the expression $\int f(x)dx$, the function f(x) is called the **integrand** and dx is a differential (in its symbolic meaning). The constant *C* as above is called the **constant of integration**.

The indefinite integral should not be confused with the **definite** integral $\int_{a}^{b} f(x) dx$ which we will consider next week and is defined as a limit of a sum. The symbol \int is a stretched **S** and reminds about the **S**um. We will also explain the relation between the indefinite and the definite integral. **Power Rule:** The indefinite integral of a power function $f(x) = x^n$, where $n \neq -1$ is

$$\int x^n \, \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C.$$

Raise the exponent by 1 and divide by the raised exponent.

Example: Find the indefinite integral of the following functions:

a)
$$f(x) = x^{13}$$
 $\int f(x) dx = \frac{x^{14}}{14} + C$
b) $f(x) = \sqrt{x} = x^{1/2}$ $\int f(x) dx = \frac{x^{3/2}}{3/2} + C = \frac{2x^{3/2}}{3} + C$
c) $f(x) = \frac{1}{x^3} = x^{-3}$ $\int f(x) dx = \frac{x^{-2}}{-2} + C = -\frac{1}{2x^2} + C$
d) $f(x) = 1 = x^0$ $\int f(x) dx = x + C$

Table of Indefinite Integrals

	f(x)	$\int f(x) \mathrm{d}x$		
	1	x + C	f(x)	$\int f(x) \mathrm{d}x$
			sec ² x	$\tan x + C$
	x^n $\frac{1}{x}$	$\frac{x^{n+1}}{n+1} + C, \ n \neq 1$	Sec X	
		$n+1$ + C, $n \neq 1$	sec x tan x	$\sec x + C$
		$\ln x + C$		1
		$e^{x} + C$	a^{\times}	$\frac{1}{\ln a}a^{x}+C$
	e ^x		1	arctan $x + C$
	sin x	$-\cos x + C$	$1 + x^2$	
			1	$\arcsin x + C$
	cos x	$\sin x + C$	$\overline{\sqrt{1-x^2}}$	
Proof by derivation.				

Guess and Fudge Method

Example: Find an antiderivative of cos(3x).

Solution:

Since $\int \cos x dx = \sin x + C$ we try $\sin(3x)$ with fudge factor $\frac{1}{3}$: $\frac{1}{3}\sin(3x)$. Indeed $(\frac{1}{3}\sin(3x))' = \frac{1}{3}\cos(3x) \cdot 3 = \cos(3x)$. So $\frac{1}{3}\sin(3x)$ is an antiderivative.

The guess and fudge method applies to functions of the form f(ax + b), where *a* and *b* are constants.

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

where $F(x)$ is an antiderivative of $f(x)$.

Example:

a)
$$\int \sin(2x - \pi) dx = -\frac{1}{2} \cos(2x - \pi) + C$$

b) $\int e^{5-3x} dx = -\frac{1}{3} e^{5-3x} + C$

Rules for the indefinite integral

1) Constant factor rule:

$$\int k \cdot f(x) \, \mathrm{d}x = k \cdot \int f(x) \, \mathrm{d}x$$

Proof: $(kF(x))' = k \cdot F'(x)$.

2) Sum and difference rule:

$$\int (f(x) \pm g(x)) \, \mathrm{d}x = \int f(x) \, \mathrm{d}x \pm \int g(x) \, \mathrm{d}x$$

Proof: $(F(x) \pm G(X))' = F'(x) \pm G'(x)$.

Example: Find
$$\int (e^{3x} + 7x^{-1}) dx$$
.
Solution:

$$= \int e^{3x} dx + 7 \int x^{-1} dx \text{ by rule 1} \text{ and 2}$$

$$= \frac{1}{3}e^{3x} + 7 \ln |x| + C$$
Example: Find $\int \left(\frac{1}{x-2} + (3x+7)^5\right) dx$.
Solution:

$$= \ln |x-2| + \frac{(3x+7)^6}{6 \cdot 3} + C$$
Example: Find $\int \frac{dx}{1+x^2}$
Solution:

$$= \int \left(\frac{1}{1+x^2}\right) dx$$

$$= \arctan x + C$$

Application to differential equations

Example: Find a function f(x) such that f'(x) = 6x(1-x) and f(0) = 1.

Solution:

$$f(x) \text{ is an antiderivative of } 6x(1-x). \text{ Thus:}$$

$$f(x) = \int 6x(1-x) \, dx$$

$$= \int (6x - 6x^2) \, dx$$

$$= 6 \cdot \frac{x^2}{2} - 6 \cdot \frac{x^3}{3} + C$$

$$= 3x^2 - 2x^3 + C$$
When $x = 0$: $f(0) = 1$

$$\Leftrightarrow 3 \cdot 0 - 2 \cdot 0 + C = 1 \Leftrightarrow C = 1.$$

$$f(x) = 3x^2 - 2x^3 + 1$$

Example: A body falls to the ground. During the fall, it feels a constant acceleration of g where $g = 32 \text{ ft/sec}^2$. At time t = 0 the body has the height y_0 and the velocity v_0 . Find a formula for the the height y in terms of t.

Solution:

Let y = y(t) be the height function, $v = v(t) = \frac{dy}{dt}$ be the velocity function and $a = a(t) = \frac{dv}{dt}$ be the acceleration function.

We have a(t) = -g (downward acceleration).

Since v is an antiderivative of a(t) one has:

$$v = \int -g \, \mathrm{d}t = -g \int 1 \, \mathrm{d}t = -gt + C$$
$$v(0) = v_0 \Rightarrow 0 + C = v_0 \Rightarrow C = v_0$$

Thus: $v = -gt + v_0$.

Since y is an antiderivative of v(t) one has:

$$y = \int (-gt + v_0) dt = -g\frac{t^2}{2} + v_0t + C$$

$$y(0) = y_0 \Rightarrow 0 + 0 + C = y_0 \Rightarrow C = y_0$$

Thus: $y = g\frac{t^2}{2} + v_0t + y_0$.