Calculus I - Lecture 11 - Derivatives of General Exponential and Inverse Functions

Lecture Notes: http://www.math.ksu.edu/~gerald/math220d/

Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html

Gerald Hoehn (based on notes by T. Cochran)

February 26, 2014

Derivative of General Exponential functions

We know:

 $\frac{\mathrm{d}}{\mathrm{d}x}\,e^x=e^x$

By the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}\,e^{f(x)}=e^x\cdot f'(x)$$

Example: Find the derivative of 2^{\times} .

Solution: Recall $2 = e^{\ln 2}$, so $2^{x} = (e^{\ln 2})^{x} = e^{(\ln 2)x}$. Thus $\frac{d}{dx} 2^{x} = \frac{d}{dx} e^{(\ln 2)x} = e^{(\ln 2)x} \frac{d}{dx} ((\ln 2)x)$ $= (\ln 2) \cdot 2^{x}$.

Theorem

 $\frac{\mathrm{d}}{\mathrm{d}x}b^{x} = (\ln b) \cdot b^{x}, \quad \text{for any base } b > 0.$

Example: Find
$$\frac{d}{dx} 7^{x^2}$$
.
Solution: We apply the chain rule with outer function $f(u) = 7^u$
and inner function $g(x) = x^2$:
 $\frac{d}{dx} 7^{x^2} = (\ln 7) \cdot 7^{(x^2)} \cdot \frac{d}{dx} x^2$
 $= 2 \ln 7 \cdot x \cdot 7^{x^2}$
Example: Find $\frac{d}{dx} 5^{5^x}$.
Solution:
 $\frac{d}{dx} 5^{5^x} = (\ln 5) \cdot 5^{5^x} \cdot \frac{d}{dx} 5^x$
 $= (\ln 5) \cdot 5^{5^x} \cdot (\ln 5) \cdot 5^x$
 $= \ln^2 5 \cdot 5^x \cdot 5^{5^x}$

The Derivative of the Natural Logarithm function

Example: Let
$$y = \ln x$$
. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Solution:

We have $e^y = e^{\ln x} = x$.

We take now the derivative on both sides:

$$\frac{d}{dx} e^{y} = \frac{d}{dx} x$$

$$e^{y} \cdot \frac{dy}{dx} = 1 \qquad \text{(by the chain rule)}$$
Thus: $\frac{dy}{dx} = \frac{1}{e^{y}} = \frac{1}{x}$, since $e^{y} = x$.
We have shown the following rule:
Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln x = \frac{1}{x}$$

Example: Find
$$\frac{d}{dx} \ln(x - 5x^3)$$
.
Solution:
 $\frac{d}{dx} \ln(x - 5x^3) = \frac{1}{x - 5x^3} \cdot \frac{d}{dx} (x - 5x^3)$
 $= \frac{1}{x - 5x^3} \cdot (1 - 15x^2)$
 $= \frac{1 - 15x^2}{x - 5x^3}$
Example: Find $\frac{d}{dx} x \ln x$.
Solution:
 $\frac{d}{dx} x \ln x = \frac{d}{dx} (x) \cdot \ln x + x \cdot \frac{d}{dx} (\ln x)$
 $= 1 \cdot \ln x + x \cdot \frac{1}{x}$
 $= 1 + \ln x$

Example: Compute
$$\frac{d}{dx} \log_b x$$
 for any base $b > 0$.
Solution:
We have $\log_b x = \frac{\ln x}{\ln b}$.
Thus:
 $\frac{d}{dx} \log_b x = \frac{d}{dx} \frac{\ln x}{\ln b} = \frac{1}{\ln b} \cdot \frac{d}{dx} \ln x = \frac{1}{\ln b} \cdot \frac{1}{x}$. (Remember)
Example: Compute $\frac{d}{dx} \log_5(\log_5(x))$.
Solution:
 $\frac{d}{dx} \log_5(\log_5(x)) = \frac{1}{\ln 5} \cdot \frac{1}{\log_5 x} \cdot \frac{d}{dx} \log_5 x$
 $= \frac{1}{\ln 5} \cdot \frac{1}{\log_5 x} \cdot \frac{1}{\ln 5} \cdot \frac{1}{x}$
 $= \frac{1}{\ln^2 5 \cdot x \log_5 x}$

Logarithmic Differentiation

Let
$$y = f(x)$$
, $y' = \frac{dy}{dx} = f'(x)$.

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}x}\,\ln y = \frac{y'}{y}$$

Indeed, by the chain rule:

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln y = \frac{\mathrm{d}}{\mathrm{d}x}\ln(f(x)) = \frac{1}{f(x)}\cdot\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \frac{1}{f(x)}\cdot f'(x) = \frac{y'}{y}.$$

This is sometimes helpful to compute the derivative of a function which is mainly a combination of products, quotients or powers:

1. Take 'ln' of both sides and expand using the folowing rules:

- $\blacktriangleright \ln(AB) = \ln A + \ln B$
- $\blacktriangleright \ln(A/B) = \ln A \ln B$
- $\blacktriangleright \ln(A^n) = n \ln A$

2. Take $\frac{d}{dx}$ of both sides, using the theorem for the left side. 3. Solve for y'. **Example:** Find $\frac{dy}{dx}$ by logarithmic differentiation, given $y = \sqrt[4]{x} \sin^3 x$. **Solution:** Step 1: $\ln y = \ln(\sqrt[4]{x}\sin^3 x)$ $= \ln(\sqrt[4]{x}) + \ln(\sin^3 x)$ $= \ln(x^{1/4}) + \ln((\sin x)^3)$ $=\frac{1}{4}\ln x + 3\ln(\sin x)$ Step 2: $\frac{\mathrm{d}}{\mathrm{d}x}\ln y = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{4}\ln x\right) + \frac{\mathrm{d}}{\mathrm{d}x}\left(3\ln(\sin x)\right)$ $\frac{y'}{v} = \frac{1}{4} \cdot \frac{1}{x} + 3 \cdot \frac{1}{\sin x} \cdot \cos x$ Step 3: $y' = \left[\frac{1}{4x} + 3\cot x\right] \cdot y$ $y' = \left[\frac{1}{4x} + 3\cot x\right] \sqrt[4]{x} \sin^3 x$

Derivative of Inverse Functions

The trick we have used to compute the derivative of the natural logarithm works in general for inverse functions.

Recall that the **inverse function** $f^{-1}(x)$ of a function f(x) is defined by the property that $f(f^{-1}(x)) = x$.

Warning: Do not confuse $f^{-1}(x)$ with the reciprocal 1/f(x).

Theorem $\frac{d}{dx} f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$ Proof: We differentiate both sides of $f(f^{-1}(x)) = x$: $\frac{d}{dx} f(f^{-1}(x)) = \frac{d}{dx} x$ $f'(f^{-1}(x)) \cdot \frac{d}{dx} f^{-1}(x) = 1 \qquad \text{(by the chain rule)}$ Thus: $\frac{d}{dx} f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$.

Inverses of the trigonometric functions

$$y = \sin^{-1}(x) = \operatorname{arcsin}(x), -1 \leq x \leq 1, -\overline{1} \leq y \leq \overline{1}.$$

$$\sum_{i \text{ inverse sine function or arcsine function}} \sin^{-1}(x) = \operatorname{angle}(for arc) between -\overline{1} and -\overline{1} what is included in the exponent means inverse function, not -in the exponent means inverse function, not -in x - y = sin 0$$

$$\exp^{-1}(x) = -\overline{1}/2, \quad y = sin 0$$

$$\exp^{-1}(x) = -\overline{1}/2, \quad y = sin 0$$

Inverses of the trigonometric functions

Example: Find
$$\frac{d}{dx} \arcsin x$$
.
Solution:
 $\arctan x = \sin^{-1} x$ is the inverse function of $\sin x$.
Since $\frac{d}{dx} \sin x = \cos x$, by the theorem for inverse functions:
 $\frac{d}{dx} \arcsin x = \frac{d}{dx} \sin^{-1} x = \frac{1}{\cos(\sin^{-1} x)}$
Using $\sin^2 z + \cos^2 z = 1$ or $\cos z = \sqrt{1 - \sin^2 z}$, we obtain:
 $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - \sin^2(\sin^{-1} x)}} = \frac{1}{\sqrt{1 - x^2}}$

The arcus tangent function $y = \arctan x$ is defined for $x \in \mathbf{R}$ with $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Example: Find
$$\frac{\mathrm{d}}{\mathrm{d}x} \arctan x = \tan^{-1}(x)$$
.

Solution:

We use again the theorem for the derivative of inverse functions.

Since
$$\frac{d}{dx} \tan x = \sec^2 x = \frac{1}{\cos^2 x}$$
 we get:
 $\frac{d}{dx} \arctan x = \frac{d}{dx} \tan^{-1} x = \frac{1}{\sec^2(\tan^{-1} x)} = \cos^2(\tan^{-1} x).$
Using $\sin^2 z + \cos^2 z = 1$ or $\tan^2 z + 1 = \frac{1}{\cos^2 z}$, we obtain:
 $\frac{d}{dx} \arctan x = \frac{1}{1 + \tan^2(\tan^{-1} x)} = \frac{1}{1 + x^2}$

Theorem

